Push The Pace \#4

You have thirty-five minutes to answer seven examination questions

Marks Available : 40 (+ 14 bonus)

Further A-Level Pure Mathematics
Push The Pace Revision Papers

Question 1

Further A-Level Examination Question from June 2013, Paper 1, Q6 (OCR)

The Argand diagram shows a half-line ℓ and a circle C.
The circle has centre 3 i and passes through the origin.
(i) Write down, in complex number form, the equations of ℓ and C.
(ii) Write down inequalities that define the region shaded.
(The shaded region includes the boundaries)

Question 2

Further A-Level Examination Question from June 2019, Paper 1, Q7 (MEI)
A curve has cartesian equation $\left(x^{2}+y^{2}\right)^{2}=2 c^{2} x y$, where c is a positive constant.
(a) Show that the polar equation of the curve is $r^{2}=c^{2} \sin 2 \theta$
(b) Sketch the curves $r=c \sqrt{\sin 2 \theta}$ and $r=-c \sqrt{\sin 2 \theta}$ for $0 \leqslant \theta \leqslant \frac{\pi}{2}$
(c) Find the area of the region enclosed by one of the loops in part (b).

Question 3

Advanced Higher Examination Question from May 2019, Q2, (SQA)
Matrix \mathbf{A} is defined by $\mathbf{A}=\left(\begin{array}{rrr}2 & 1 & 4 \\ -3 & p & 2 \\ -1 & -2 & 5\end{array}\right)$ where $p \in \mathbb{R}$
(a) Given that the deteminant of \mathbf{A} is 3 , find the value of p

Matrix \mathbf{B} is defined by $\mathbf{B}=\left(\begin{array}{ll}0 & 1 \\ q & 3 \\ 4 & 0\end{array}\right)$ where $q \in \mathbb{R}$
(b) Find AB
(c) Explain why $\mathbf{A B}$ does not have an inverse.

Question 4

Further AS-Level Examination Question from May 2019, Q10 (WJEC)
The quadratic equation,

$$
p x^{2}+q x+r=0
$$

has roots α and β, where p, q, r are non-zero constants.
(a) A cubic equation is formed with roots $\alpha, \beta, \alpha+\beta$
Find the cubic equation with coefficients expressed in terms of p, q, r.
[6 marks]
(b) Another quadratic equation $p x^{2}-q x-r=0$ has roots 2α and γ. Show that $\beta=-2 \gamma$

Question 5

Further A-Level Specimen Examination Question from 2017, Paper 1, Q11 (AQA)
(a) Prove that $\frac{\sinh \theta}{1+\cosh \theta}+\frac{1+\cosh \theta}{\sinh \theta} \equiv 2 \operatorname{coth} \theta$
(b) Solve $\frac{\sinh \theta}{1+\cosh \theta}+\frac{1+\cosh \theta}{\sinh \theta}=4$

Give your answer in an exact form.

Question 6

Further A-Level Examination Question from June 2015, Paper FP1, Q3 (WJEC)
The complex number z satisfies the equation,

$$
2 z-\mathrm{i} z^{*}=\frac{2+\mathrm{i}}{1-\mathrm{i}} \text { where } z^{*} \text { denotes the complex conjugate of } z
$$

Express z in the form $a+b \mathrm{i}$ where a and b are rational numbers to be found.

Question 7

Further A-Level Examination Question from June 2010, Paper FP2, Q8 (Edexcel)
(a) Find the value of λ for which $y=\lambda x \sin 5 x$ is a particular integral of the differential equation,

$$
\frac{d^{2} y}{d x^{2}}+25 y=3 \cos 5 x
$$

(b) Using your answer to part (a), find the general solution of the differential equation,

$$
\frac{d^{2} y}{d x^{2}}+25 y=3 \cos 5 x
$$

Given that at $x=0, y=0$ and $\frac{d y}{d x}=5$,
(c) find the particular solution of this differential equation, giving your solution in the form $y=f(x)$
[5 bonus marks]
(d) Sketch the curve with equation $y=f(x)$ for $0 \leqslant x \leqslant \pi$

