Push The Pace #4

You have thirty-five minutes to answer seven examination questions

Marks Available : 40 (+ 14 bonus)

Further A-Level Pure Mathematics Push The Pace Revision Papers

Question 1

Further A-Level Examination Question from June 2013, Paper 1, Q6 (OCR)

The Argand diagram shows a half-line ℓ and a circle C.

The circle has centre 3i and passes through the origin.

(i) Write down, in complex number form, the equations of ℓ and \mathcal{C} .

[4 marks]

(ii) Write down inequalities that define the region shaded.(The shaded region includes the boundaries)

Further A-Level Examination Question from June 2019, Paper 1, Q7 (MEI)

A curve has cartesian equation $(x^2 + y^2)^2 = 2c^2 xy$, where *c* is a positive constant. (**a**) Show that the polar equation of the curve is $r^2 = c^2 \sin 2\theta$

[2 marks]

(**b**) Sketch the curves
$$r = c\sqrt{\sin 2\theta}$$
 and $r = -c\sqrt{\sin 2\theta}$ for $0 \le \theta \le \frac{\pi}{2}$

[3 marks]

(c) Find the area of the region enclosed by one of the loops in part (b).

[3 marks]

Advanced Higher Examination Question from May 2019, Q2, (SQA)

Matrix **A** is defined by $\mathbf{A} = \begin{pmatrix} 2 & 1 & 4 \\ -3 & p & 2 \\ -1 & -2 & 5 \end{pmatrix}$ where $p \in \mathbb{R}$

(**a**) Given that the deteminant of **A** is 3, find the value of p

[3 marks]

Matrix **B** is defined by $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ q & 3 \\ 4 & 0 \end{pmatrix}$ where $q \in \mathbb{R}$ (**b**) Find **AB**

[2 marks]

(c) Explain why **AB** does not have an inverse.

[1 mark]

Further AS-Level Examination Question from May 2019, Q10 (WJEC) The quadratic equation,

$$px^2 + qx + r = 0$$

has roots α and β , where p, q, r are non-zero constants.

(a) A cubic equation is formed with roots α , β , $\alpha + \beta$ Find the cubic equation with coefficients expressed in terms of *p*, *q*, *r*.

[6 marks]

(**b**) Another quadratic equation $px^2 - qx - r = 0$ has roots 2α and γ . Show that $\beta = -2\gamma$

Further A-Level Specimen Examination Question from 2017, Paper 1, Q11 (AQA)

(a) Prove that
$$\frac{\sinh\theta}{1+\cosh\theta} + \frac{1+\cosh\theta}{\sinh\theta} \equiv 2\coth\theta$$

[4 marks]

(**b**) Solve
$$\frac{\sinh\theta}{1+\cosh\theta} + \frac{1+\cosh\theta}{\sinh\theta} = 4$$

Give your answer in an exact form.

[2 marks]

Further A-Level Examination Question from June 2015, Paper FP1, Q3 (WJEC) The complex number *z* satisfies the equation,

 $2z - iz^* = \frac{2 + i}{1 - i}$ where z^* denotes the complex conjugate of z

Express z in the form a + bi where a and b are rational numbers to be found.

[4 marks]

Further A-Level Examination Question from June 2010, Paper FP2, Q8 (Edexcel)

(a) Find the value of λ for which $y = \lambda x \sin 5x$ is a particular integral of the differential equation,

$$\frac{d^2y}{dx^2} + 25y = 3\cos 5x$$

[4 bonus marks]

(**b**) Using your answer to part (a), find the general solution of the differential equation,

$$\frac{d^2y}{dx^2} + 25y = 3\cos 5x$$

[3 Bonus Marks]

Given that at x = 0, y = 0 and $\frac{dy}{dx} = 5$,

find the particular solution of this differential equation, giving your (**c**) solution in the form y = f(x)

[5 bonus marks]

Sketch the curve with equation y = f(x) for $0 \le x \le \pi$ (**d**)

[2 bonus marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk