Push The Pace \#2

You have thirty-five minutes to answer seven examination questions

Marks Available : 40 (+ 6 bonus)
Further A-Level Pure Mathematics
Push The Pace Revision Papers

Question 1

Further AS-Level Examination Question from October 2020, Paper 1, Q2 (OCR)
The Argand diagram shows two complex numbers z_{1} and z_{2}

(a) Mark points representing each of the following complex numbers,

- z_{1}^{*}
- $z_{2}-z_{1}$
(b) In the case where $z_{1}=1+2 \mathrm{i}$ and $z_{2}=3+\mathrm{i}$, find $\frac{z_{2}-z_{1}}{z_{1}^{*}}$ in the form $a+b \mathrm{i}$, where a and b are real numbers.

Question 2

Further A-Level Examination Question from June 2022, Paper 4, Q1 (WJEC)
A function f has domain $(-\infty, \infty)$ and is defined by $f(x)=\cosh ^{3} x-3 \cosh x$
(a) Show that the graph of $y=f(x)$ has only one stationary point.
(b) Find the nature of this stationary point.
(c) State the largest possible range of $f(x)$

Question 3

Further A-Level Examination Question from June 2019, Paper 2, Q2 (WJEC)
When plotted on an Argand diagram, the four fourth roots of the complex number $9-3 \sqrt{3}$ i lie on a circle. Find the equation of this circle.
[4 marks]

Question 4

Further A-Level Examination Question from June 2019, Paper 2, Q9 (OCR)
The diagram shows the curve $r=\sqrt{\sin \theta} e^{\frac{1}{3} \cos \theta}$ for $0 \leqslant \theta \leqslant \pi$

(a) Find the exact area enclosed by the curve.
(b) Show that the greatest value of r on the curve is $\sqrt{\frac{\sqrt{3}}{2}} e^{\frac{1}{6}}$

Question 5

Further A-Level Examination Question from June 2019, Paper 2, Q10 (OCR)
(a) Use differentiation to find the first two non-zero terms of the Maclaurin expansion of $\ln \left(\frac{1}{2}+\cos x\right)$
(b) By considering the root of the equation $\ln \left(\frac{1}{2}+\cos x\right)=0$ deduce that $\pi \approx 3 \sqrt{3 \ln \left(\frac{3}{2}\right)}$

Question 6

Further A-Level Examination Question from June 2020, Paper 2, Q12 (AQA)
(a) Given that $I=\int_{a}^{b} e^{2 t} \sin t d t$, show that $I=\left[q e^{2 t} \sin t+r e^{2 t} \cos t\right]_{a}^{b}$ where q and r are rational numbers to be found.
(b) A small object is initially at rest. The subsequent motion of the object is modelled by the differential equation,

$$
\frac{d v}{d t}+v=5 e^{t} \sin t
$$

where v is the velocity at time t
Find the speed of the object when $t=2 \pi$, giving your answer in exact form.

