Further Pure A-Level Mathematics Compulsory Course Components Core 1 and Core 2

PusH ThE PacE

Further A-Level
Mathematics Revision

Push The Pace \#1

You have thirty-five minutes to answer seven examination questions

Marks Available : 40 (+ 6 bonus)

Further A-Level Pure Mathematics

Push The Pace Revision Papers

Question 1

Further A-Level Examination Question from October 2021, Paper 1, Q6 (OCR) O is the origin of a coordinate system whose units are cm .
The points A, B, C and D have coordinates $(1,0),(1,4),(6,9)$ and $(0,9)$ respectively.
The arc $B C$ is part of the curve with equation $x^{2}+(y-10)^{2}=37$
The closed shape $O A B C D$ is formed, in turn, from the line segments $O A$ and $A B$, the arc $B C$ and the line segments $C D$ and $D O$ (see diagram).
A funnel can be modelled by rotating $O A B C D$ by 2π radians about the y-axis.

Find the volume of the funnel according to the model.

Question 2

Further A-Level Examination Question from June 2020, Paper 2, Q4 (AQA)
The matrices \mathbf{A} and \mathbf{B} are defined as follows,

$$
\mathbf{A}=\left(\begin{array}{rr}
x+1 & 2 \\
x+2 & -3
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{cr}
x-4 & x-2 \\
0 & -2
\end{array}\right)
$$

Show that there is a value of x for which $\mathbf{A B}=k \mathbf{I}$, where \mathbf{I} is the 2×2 identity matrix and k is an integer to be found.
[3 marks]

Question 3

Further A-Level Examination Question from June 2019, Paper 2, Q4 (AQA)
The positive integer k is such that, $\sum_{r=1}^{k}(3 r-k)=90$
Find the value of k

Question 4

Further A-Level Examination Question from June 2022, Paper 4, Q7 (WJEC)
(a) Express $4 x^{2}+10 x-24$ in the form $a(x+b)^{2}+c$, where a, b and c are constants whose values are to be found.
(b) Hence evaluate the integral $\int_{3}^{5} \frac{6}{\sqrt{4 x^{2}+10 x-24}} d x$

Give your answer correct to 3 decimal places.

Question 5

Further A-Level Examination Question from June 2022, Paper 4, Q12 (WJEC)
Find the solution of the differential equation,

$$
3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-2 y=8+6 x-2 x^{2}
$$

where $y=6$ and $\frac{d y}{d x}=5$ when $x=0$

Question 6

Further A-Level Examination Question from May 2020, Paper 1, Q8 (AQA)
The three roots of the equation,

$$
4 x^{3}-12 x^{2}-13 x+k=0
$$

where k is a constant, form an arithmetic sequence.
Find the roots of the equation.

Question 7

Further A-Level Examination Question from June 2022, Paper 4, Q5 (WJEC)
(a) Determine the number of solutions of the equations,

$$
\begin{array}{r}
x+2 y=3 \\
2 x-5 y+3 z=8 \\
6 y-2 z=0
\end{array}
$$

(b) Each of the three equations in part (a) has the geometric interpretation of being a three dimensional plane. Backed up by a rigorous analysis determine the configuration of the three planes.

