The mean value of a function

Learning Objectives

- To be able to find the mean value of a function and apply transformations.
- To be able to apply a range of integration techniques including by substitution and by parts.

Starter Questions

1. $\int 2 x^{2}\left(x^{3}-1\right)^{3} d x$
2. $\int \frac{\sin \theta}{1+\cos 2 \theta} d \theta$
3. $\int_{0}^{\frac{\pi}{6}} x \sin (3 x) d x$

Mean Value Function

Example 1

Find the mean value of $\mathrm{f}(x)=\frac{4}{\sqrt{2+3 x}}$ over the interval $[2,6]$.

Example 2

Find the exact mean value of
$\mathrm{f}(x)=x \cos 2 x$ over the interval $\left[0, \frac{\pi}{2}\right]$.

Question Practice

1. Find the exact mean value of $\mathrm{f}(x)=\frac{\sin x \cos x}{\cos 2 x+2}$ over the interval $\left[0, \frac{\pi}{2}\right]$.
2. Find the exact mean value of $\mathrm{f}(x)=x \sin 2 x$ over the interval $\left[0, \frac{\pi}{3}\right]$.

3.

$\mathrm{f}(x)=\ln (k x)$, where k is a positive constant.
Given that the mean value of $\mathrm{f}(x)$ on the interval $[0,2]$ is -2 , find the value of k.
(4 marks)

If the function $\mathrm{f}(x)$ has mean value $\overline{\mathrm{f}}$ over the interval $[a, b]$, and k is a real constant, then:

- $\mathrm{f}(x)+k$ has mean value $\overline{\mathbf{f}}+k$ over the interval $[a, b]$
- $k f(x)$ has mean value $k \bar{f}$ over the interval $[a, b]$
- $-\mathrm{f}(x)$ has mean value $-\overline{\mathrm{f}}$ over the interval $[a, b]$.

Watch out You cannot deduce the mean value of $\mathrm{f}(-x)$ or $\mathrm{f}(k x)$ in this way.
4.

$$
\mathrm{f}(x)=x\left(x^{2}-4\right)^{4}
$$

a Show that the mean value of $\mathrm{f}(x)$ over the interval $[0,2]$ is $\frac{256}{5}$
b Use the answer to part a to find the mean value over the interval $[0,2]$ of $-2 \mathrm{f}(x)$.
5.
$\mathrm{f}(x)=\frac{\cos x}{(2+\sin x)^{2}}$
a Find $\int \mathrm{f}(x) \mathrm{d} x$.
b Hence show that the mean value of $\mathrm{f}(x)$ over the interval $\left[0, \frac{5 \pi}{3}\right]$ is $-\frac{3}{130 \pi}(3+4 \sqrt{3})$. (2 marks)
c Hence, or otherwise, find the mean value, over the interval $\left[0, \frac{5 \pi}{3}\right]$, of $\mathrm{f}(x)+3 x$. (3 marks)

Exam Question - June 2019 Core Pure Paper 2

3.

$$
\mathrm{f}(x)=\frac{1}{\sqrt{4 x^{2}+9}}
$$

(a) Using a substitution, that should be stated clearly, show that

$$
\int \mathrm{f}(x) \mathrm{d} x=A \sinh ^{-1}(B x)+c
$$

where c is an arbitrary constant and A and B are constants to be found.
(b) Hence find, in exact form in terms of natural logarithms, the mean value of $\mathrm{f}(x)$ over the interval $[0,3]$.

NB: From the formula booklet

Integration (+ constant; $a>0$ where relevant)

$$
\begin{array}{ll}
\mathbf{f}(\boldsymbol{x}) & \mathrm{f} \mathbf{f}(x) \mathbf{d} x \\
\sinh x & \cosh x \\
\cosh x & \sinh x \\
\tanh x & \ln \cosh x \\
\frac{1}{\sqrt{a^{2}-x^{2}}} & \arcsin \left(\frac{x}{a}\right) \quad(|x|<a) \\
\frac{1}{a^{2}+x^{2}} & \frac{1}{a} \arctan \left(\frac{x}{a}\right) \\
\frac{1}{\sqrt{x^{2}-a^{2}}} & \operatorname{arcosh}\left(\frac{x}{a}\right), \ln \left\{x+\sqrt{x^{2}-a^{2}}\right\} \quad(x>a) \\
\frac{1}{\sqrt{a^{2}+x^{2}}} & \operatorname{arsinh}\left(\frac{x}{a}\right), \ln \left\{x+\sqrt{x^{2}+a^{2}}\right\} \\
\frac{1}{a^{2}-x^{2}} & \frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|=\frac{1}{a} \operatorname{artanh}\left(\frac{x}{a}\right) \quad(|x|<a) \\
\frac{1}{x^{2}-a^{2}} & \frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|
\end{array}
$$

- To be able to find the mean value of a function and apply transformations.
- To be able to apply a range of integration techniques including by substitution and by parts.

Reflection

Before this lesson I could...

During this lesson I learnt that...

I now need to...

