5.1 Rational Results

Last lesson we looked at iterations that converged upon integers. However, just as the answers obtained by using algebra to solving equation can be rational numbers, so can an iteration converge upon such a number. The ideas involved are the same but it may take more iterations, more presses of the $=$ sign, to become reasonably confident of what fraction the iteration is converging upon.

5.2 By Algebra

Use algebra to solve the equation, $x=\frac{(1-x)}{2}$

5.3 By Iteration

(i) With $A_{1}=1$ and $A_{n+1}=\frac{\left(1-A_{n}\right)}{2}$ complete the table,

Term	Value
A_{1}	1
A_{2}	
A_{3}	
A_{4}	\ldots
\ldots	\ldots
A_{10}	
\ldots	
A_{20}	

(ii) What does the limit of this iterative sequence seems to be ?
(iii) Show that your part (ii) answer is a fixed point of the iteration.

5.4 Exercise

Non-Calculator

Marks Available : 40

Question 1

(i) With $B_{1}=1$ and $B_{n+1}=\frac{\left(1+B_{n}\right)}{4}$ complete the table,

Term	Value
B_{1}	1
B_{2}	
B_{3}	
B_{4}	\ldots
\ldots	\ldots
B_{10}	
\ldots	
B_{20}	

(ii) What does the limit of this iterative sequence seems to be ?
(iii) Show that your part (ii) answer is a fixed point of the iteration.

Question 2

Show that $\frac{1}{7}$ is a fixed point of the iteration $C_{n+1}=\frac{1+C_{n}}{8}$

Question 3

(i) Complete the table to show what sevenths look like, expressed as decimals.

Vulgar Fraction	Decimal Fraction
$\frac{1}{7}$	$0.1428571429 \ldots$
$\frac{2}{7}$	$0.2857142857 \ldots$
$\frac{3}{7}$	
$\frac{4}{7}$	
$\frac{5}{7}$	
$\frac{6}{7}$	

(ii) With $D_{1}=1$ and $D_{n+1}=\frac{\left(3+D_{n}\right)}{8}$ complete the table,

Term	Value
D_{1}	1
D_{2}	
D_{3}	
D_{4}	\ldots
\ldots	
D_{10}	

(iii) What rational number does the limit of this iterative sequence seems to be ?
[1 mark]
(iv) Show that your part (ii) answer is a fixed point of the iteration.

Question 4

(i) With $E_{1}=1$ and $E_{n+1}=\frac{\left(5-4 E_{n}\right)}{3}$ complete the table,

Term	Value
E_{1}	1
E_{2}	
E_{3}	
E_{4}	\ldots
\ldots	\ldots
E_{10}	
\ldots	\ldots
E_{20}	
\ldots	
E_{40}	

(ii) This iteration is "not convergent".

Explain what this means.
[1 mark]
(iii) Show that $\frac{5}{7}$ is a fixed point of the iteration (that the iteration failed to find)

Question 5

The equation $x=\frac{\left(x+\frac{3}{5}\right)}{4}$ is to be solved using iteration.
(i) Use $F_{1}=10$ and type in $F_{n+1}=\frac{\left(F_{n}+\frac{3}{5}\right)}{4}$ into your calculator. It should look something like this,

[1 mark]
(ii) With $F_{1}=10$ and $F_{n+1}=\frac{\left(F_{n}+\frac{3}{5}\right)}{4}$ complete the table,

Term	Value
F_{1}	10
F_{2}	
F_{3}	
F_{4}	\ldots
\ldots	\ldots
F_{10}	
\ldots	
F_{20}	

(iii) What rational number does the limit of this iteration seems to be?
(iv) Show that your part (iii) answer is a fixed point of the iteration.
[4 marks]
(v) What conclusion can you reach regarding $x=\frac{\left(x+\frac{3}{5}\right)}{4}$?

[1 mark]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2023 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

