## 4.1 "Doing The Same to Both Sides"

Use the algebra of "doing the same to both sides" to solve $x=\frac{x+20}{5}$

### 4.2 Solving Using Iteration

The equation $x=\frac{x+20}{5}$ is to be solved using iteration.
(i) With $A_{1}=10$ and $A_{n+1}=\frac{A_{n}+20}{5}$ complete the following table,

| Term | Value |
| :---: | :---: |
| $A_{1}$ | 10 |
| $A_{2}$ |  |
| $A_{3}$ |  |
| $A_{4}$ |  |
| $A_{5}$ |  |
| $A_{6}$ |  |
| $A_{7}$ |  |
| $A_{8}$ |  |

(ii) What does the limit of this iterative sequence seems to be ?
( iii ) Show that your part (ii) answer is a fixed point of the iteration.
(iv) Complete your answer by writing a conclusion.

### 4.3 Exercise

## You may use a calculator

Marks Available : 50

## Question 1

The equation $x=\frac{x+6}{2}$ is to be solved using iteration.
(i) With $B_{1}=10$ and $B_{n+1}=\frac{B_{n}+6}{2}$ complete the following table,

| Term | Value |
| :---: | :---: |
| $B_{1}$ | 10 |
| $B_{2}$ |  |
| $B_{3}$ |  |
| $B_{4}$ |  |
| $B_{5}$ |  |
| $B_{6}$ |  |
| $B_{7}$ |  |
| $B_{8}$ |  |

( ii ) What does the limit of this iterative sequence seems to be ?
( iii ) Show that your part (ii) answer is a fixed point of the iteration.
( iv ) Complete your answer by writing a conclusion.

## Question 2

GCSE Examination Question from November 2018, Paper 1MA1/3H Q13 (Edexcel)
The number of animals in a population at the start of year $t$ is $P_{t}$
The number of animals at the start of year 1 is 400
Given that $P_{t+1}=1.1 P_{t}$ work out the number of animals at the start of year 3

## Question 3

The equation $x=6-\frac{8}{x}$ is to be solved using iteration.
(i) With $C_{1}=10$ and $C_{n+1}=6-\frac{8}{C_{n}}$ complete the following table,

| Term | Value |
| :---: | :---: |
| $C_{1}$ | 10 |
| $C_{2}$ |  |
| $C_{3}$ |  |
| $C_{4}$ |  |
| $C_{5}$ |  |
| $C_{6}$ |  |
| $C_{7}$ |  |
| $C_{8}$ |  |

(ii) What does the limit of this iterative sequence seems to be ?
[ 1 mark ]
( iii ) Show that your part (ii) answer is a fixed point of the iteration.
[ 1 mark ]
(iv) Complete your answer by writing a conclusion.
[ 1 mark ]
( v) This iteration has another positive integer fixed point less than ten. Try to guess what this might be.

Check your guess by rerunning the iteration with $C_{1}$ equal to your guess. If $C_{2}=C_{1}$ your guess is correct !

## Question 4

The equation $x=\frac{18}{x}-7$ is to be solved using iteration.
(i) With $D_{1}=10$ and $D_{n+1}=\frac{18}{D_{n}}-7$ complete the following table,

| Term | Value |
| :---: | :---: |
| $D_{1}$ | 10 |
| $D_{2}$ |  |
| $D_{3}$ |  |
| $D_{4}$ |  |
| $D_{5}$ |  |
| $D_{6}$ |  |
| $D_{7}$ |  |
| $D_{8}$ |  |

( ii ) What does the limit of this iterative sequence seems to be ?
( iii ) Show that your part (ii) answer is a fixed point of the iteration.
(iv) Complete your answer by writing a conclusion.
( v ) This iteration has a positive integer fixed point less than ten. Try to guess what this might be.

Check your guess by rerunning the iteration with $D_{1}$ equal to your guess. If $D_{2}=D_{1}$ your guess is correct !

## Question 5

The equation $x=-\left(\frac{15}{x}+8\right)$ is to be solved using iteration.
(i) With $E_{1}=10$ and $E_{n+1}=-\left(\frac{15}{E_{n}}+8\right)$ complete the following table,

| Term | Value |
| :---: | :---: |
| $E_{1}$ | 10 |
| $E_{2}$ |  |
| $E_{3}$ |  |
| $E_{4}$ |  |
| $E_{5}$ |  |
| $E_{6}$ |  |
| $E_{7}$ |  |
| $E_{8}$ |  |

(ii) What does the limit of this iterative sequence seems to be ?
[ 1 mark ]
( iii ) Show that your part (ii) answer is a fixed point of the iteration.
[ 1 mark ]
(iv) Complete your answer by writing a conclusion.
[ 1 mark ]
( v ) This iteration has another negative integer fixed point close by. Try to guess what this might be.
Check your guess by rerunning the iteration with $E_{1}$ equal to your guess.
If $E_{2}=E_{1}$ your guess is correct !

## Question 6

The equation $x=\frac{9}{x^{2}}-\frac{3}{x}-5$ is to be solved using iteration. This question is about investigating the associated iteration, $F_{n+1}=\frac{9}{\left(F_{n}\right)^{2}}-\frac{3}{F_{n}}-5$
(i) Show that $F_{1}=1$ is a fixed point of the iteration.
(ii) Show that $F_{1}=-3$ is another fixed point of the iteration.
( iii ) This iteration is very slow to get to it's fixed point. Show this by completing the following table.

| Term | Value |
| :---: | :---: |
| $F_{1}$ | 10 |
| $F_{2}$ |  |
| $\ldots$ | $\ldots$ |
| $F_{10}$ |  |
| $\ldots$ | $\ldots$ |
| $F_{50}$ |  |
| $\ldots$ | $\ldots$ |
| $F_{100}$ |  |

Mathematician's would say that this iteration is "slow to converge".

