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G R A P H   T H E O R Y   I
Lecture 1

Undergraduate Lectures in Mathematics
A Third Year Course

 Graph Theory I
1.1  What is a Graph ?
A graph is an ordered pair of sets,  where the elements of

and  are calledvertices andedges respectively. Each edge is associated with
two distinct vertices and is said to join them. As beginners, our interest is in
simple graphs where, at most, there can be one edge between any vertex pair.

G ( V (G) , E (G) ) , =
V E

1.2  Visualisation of Graphs
Three examples of graphs are given below. Various catalogues of small simple
graphs have been made over the years and the numbers G241, G314 and G130
refer to a catalogue from The Open University. Modern catalogues can be found
online in the form of searchable databases. G241 is an example of a graph that is
disconnected, whilst G314 and G130 are connected. 



n = 7,    m = 5

(0,  1,  1,  2,  2,  2,  2)

n = 7,    m = 7

(1,  1,  1,  1,  2,  2,  6)

n = 6,    m = 7

(2,  2,  2,  2,  3,  3)

G241 G314 G130


The number of vertices of a graphG is usually denoted byn and is termed the
order of the graph. The number of edges,m, is thesize of G. The number of
edges that meet at a vertex gives thedegree of that vertex. The degrees of all the
vertices of a graph may be listed as a monotonic increasing sequence, one for
which ≤ for all positive integerk less thann. Two topologically distinct
graphs may have the same degree sequence as G31 and G32 demonstrate.

 ak ak + 1 



n = 5,    m = 4 n = 5,    m = 4

G31 G32

( 1,  1,  2,  2,  2  ) ( 1,  1,  2,  2,  2  )
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1.3  Some Graph Descriptors
If it is helpful to do so each vertex of a graph may be labelled distinctly,
typically using either letters or numbers.



a

b

c

d e

1

2

3

4 5


Two labelled graphsG andH are isomorphic if there is a bijectionf (a one-to-
one and onto function) betweenV(G) andV(H) such that {v, w } ∈  if and
only if { . Intuitively, isomorphism identifies when two
seemingly different graphs, such as the two above, have the same underlying
structure. To see that the two graphs above are isomorphic notice that each
connects the five vertices as if they are the beads on a loop of string. If required,
an isomorphism can be explicitly stated as being, for example, in this case,   

E (G)
f (v) , f (w)  }  ∈ E (H)

f (a) = 1 ,  f (b) = 3 ,  f (c ) = 5 ,  f (d ) = 2    f (e) = 4and

Note that “isomorphic to” defines an equivalence relation on any set of labelled
graphs. It partitions such a set into equivalence classes, called isomorphism
classes. Any catalogue of graphs will only give one example from an
isomorphism class.

The above two graphs are both a cycle on 5 vertices, This is an example of a
cycle graph, a graph that consists of a single cycle of vertices and edges and
denoted ≥ 3. The graph is also an example of aregular graph, one
where all the vertices have the same degree, in this case 2. It could be described
as being 2-regular. A regular graph iscomplete if each vertex is joined to each of
the others by exactly one edge, and denoted A regular graph with no edges is
termed a null graph,  A path onn > 2 distinct vertices is written , and will
have two end vertices of degree at least one and thread its way through each of
the remaining  vertices which will each be of degree at least 2. 

C5.

Cn,  n C5 

Kn.
Nn. Pn

(n − 2)


N5 P5 K5
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1.4  Polyhedra
Many everyday objects, polyhedral in shape, can be modelled straight forwardly
as graphs. The photographs below are of a waste paper basket. On the left the
basket is upside down, showing that it is, topologically speaking, equivalent to a
cube. On the the right it is photographed directly from above. 

   Photographs by Martin Hansen

Of the two views, the photograph to the right translates most easily into a graph,
and the result is given below.




What makes this graph the best representation of a cube is the fact that it is
uncluttered to look at and this is due in part to the fact that it is aplanar graph; it
can be presented without edges being drawn over one another. The edges of the
graph divide the plane into regions called thefaces of the plane graph. These
regions are all bounded but for one, that one being termed theinfinite or external
face. The length of a face is the number of edges bounding it.

Theorem 1.1 : Euler's Polyhedral Formula
If a connected plane graph has n vertices, m edges and f faces then,

n − m + f = 2
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1.5  Reasoning Why Euler's Polyhedral Formula is True
For the cube, the associated planar graph has 8 vertices, 12 edges and 6 faces,
and Euler's polyhedral formula holds in this case. More than simply observing
that it holds for a cube, we can look into why it holds. We'll do this in a way that
will readily generalise to show that the same formula it holds for all polyhedra
that do not have any holes in them.
The key idea is to work with the cube's planar graph and identify some
operations that reduce the complexity of that graph whilst leaving invariant the
value of   n − m + f .

1.5.1  The Triangularisation Move
Pick a face, if any, with more than three sides. Add an edge across that face.
Notice that this adds one edge and one face to the graph but leaves the value of

 unchanged because,n − m + f

n − ( m + 1 ) + ( f + 1 ) = n − m + f

1.5.2  Face Removal Move
Look for a face, if any, which shares precisely one edge with the exterior face.
Remove this face by removing the one shared edge. Notice that this subtracts
one edge and one face from the graph but does not alter the value of

because,n − m + f  
n − ( m − 1 ) + ( f − 1 ) = n − m + f

1.5.3  Vertex Removal Move
Look for a face, if any, which shares precisely two edges with the exterior face.
Remove this face by removing both these shared edges and their shared vertex.
Notice that this subtracts two edges, one vertex and one face from the graph. For
the new graph we have, 

( n − 1 ) − ( m − 2 ) + ( f − 1 ) = n − m + f

showing that, once again, the value of  is unaltered by the move.n − m + f

1.5.4  Applying the Moves
Apply the triangularisation move repeatedly until the entire graph has been
triangularised. Always apply the vertex removal rule if it is possible to do so (To
prevent the graph fragmenting and becoming disconnected). When the vertex
removal rule cannot be performed apply the face removal rule once before
switching back to always applying the vertex removal rule if it is possible to do
so. Continue in this manner until it becomes impossible to do so.

The algorithm will eventually stop with the terminating graph being that of a
single triangle for whichn = 3, m = 3 andf = 2 (don't forget the external face).
For this triangle, , and so this must also have been true for the
original planar graph and associated polyhedron.

n − m + f = 2

The next diagram shows the process being applied to the planar graph associated
with a cube.
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↓ ↓

↓

↓↓

↓

↓ ↓

↓

↓↓

1.6  The Complement of a Graph
The complement of a graphG is a graph  with the same vertex setV but whose
edge setE consists of the edges not present inG. The graph sumG + on graph
of degree n is therefore the complete graph .

G


G
 

Kn

A graph G is self-complementary if G = G




C5 C5 K5+ =


As an example,  are shown. Their graph sum is
Previously it was noted that the two graphs being summed were isomorphic.
Thus 

C5 and its complementC5


K5.

C5 is an example of a self-complementary graph.
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1.7  Exercise
Marks Available : 80

Question 1
The following three graphs are three representations of the complete graph K4


A B C

( i ) Write down the degree sequence for K4

[ 1 mark ]
( ii ) Which one of the three graphs is not planar ?

[ 1 mark ]
( iii ) is an example of a regular graph.K4  

Is it  3-regular, 4-regular or 6-regular ?

[ 1 mark ]
( iv ) How many faces has graph C ?

[ 1 mark ]
( v ) Which of the five platonic solids could be represented by K4 ?

[ 1 mark ]
Question 2
Draw all eleven possible unlabelled simple graphs with four vertices.
Under each write its degree sequence.

[ 6 marks ]
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Question 3
( i ) Provide a proof of the following theorem,

Theorem 1.2 : The Handshaking Lemma
Suppose that a graph G has n vertices and m edges, with degree sequence given

  ( d1, d2, ..., dn ) . ∑
n

1

di = 2mby  Then  

[ 4 marks ]

( ii ) Explain why The Handshaking Lemma is so called.

[ 2 marks ]

( iii ) Using The Handshaking Lemma, prove by contradiction that;


Lemma 1.1 : The Even Number of Odds
Every graph has an even number of odd-degree vertices.

[ 5 marks ]
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Question 4
A connected graph is one in which there is a path from any point to any other
point on the graph. A graph that is not connected is said to be disconnected.
Connected graphs arise naturally when derived from a polyhedron.
( i ) Let G be a 3-regular connected planar graph with 20 vertices. 

Determine the number of regions (faces) in the graph.

[ 4 marks ]

( ii ) Let G be a p-regular connected planar graph with n vertices.
Prove that either the number of vertices or the regularity must be even.

[ 4 marks ]



Martin Hansen : 11

Question 5
Prove by induction;

Lemma 1.2 : Edge Count of a Complete Graph (A Clique)

   Kn   
 n ( n − 1 )  

 2 
 The complete graph has exactly edges

[ 6 marks ]
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Question 6
( i ) Prove that there are no 3-regular graphs with five vertices.

[ 3 marks ]

( ii ) Prove that, if n and r are both odd, then there are no r-regular
graphs with n vertices.

[ 3 marks ]

Question 7
Prove the following lemma;



Lemma 1.3 : Vertex Pair Of Equal Degree
In any finite simple graph with at least two vertices, there must be at least two
vertices which have the same degree.

[ 4 marks ]



Martin Hansen : 13

Question 8
Let G be a graph with nine vertices such that each vertex is of either degree 5 or
of degree 6. Show thatG has at least six vertices of degree 5, or at least five
vertices of degree 6.

[ 4 marks ]

Question 9
Prove that, to be disconnected, a graph onn vertices can have, at most, a number
of edges, m, that is given by,

m =
 ( n − 1 ) ( n − 2 )  

 2 

[ 6 marks ]
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Question 10

   2x ( i ) Prove that a set of x elements has subsets.

[ 3 marks ]

    2
 1 
 2 

 n( n − 1 ) .( ii ) Show that there are exactly labelled simple graphs on n vertices

[ 3 marks ]



Martin Hansen : 15

Question 11
( i ) Draw the complements to each of the following graphs.

Under each write its degree sequence.

( 1,  1,  2,  2 ) ( 1,  1,  2,  3,  3 )
[ 2 marks ]

( ii ) A graph G on n vertices is self-complementary with degree sequence,

( d1, d2, ..., dn )
    di   dn + 1 − iDetermine the relationship between and  

[ 2 marks ]

( iii ) Use your part (ii) relationship to generate a list of the degree sequences,
one of which any self-complementary graphs on five vertices must
satisfy.

[ 4 marks ]
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( iv ) Show that, if a graph G is isomorphic to its complement, then the
number of vertices of G has the form 4k or 4k + 1 for k ∈ Z+

[ 5 marks ]

( v ) Furthermore, if G is regular, show that n ≡ 1 (mod 4)

[ 5 marks ]

This document has been prepared for the School of Computing and Engineering at Derby University, England
It may be freely duplicated and distributed, unaltered, for non-profit educational use

© 2023 Number Wonder
Unrestricted access to the exercise solutions is provided in return for notifying typographical and other errors to mhh@shrewsbury.org.uk
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1.8  Answers to Exercise 1.7
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

Answer 1
( i ) The degree sequence for is K4 (3,  3,  3,  3)
( ii ) No edges cross on a planar graph.

Graph B is not planar.
( iii ) At degree of each vertex is three and so is 3-regular.K4 
( iv ) Graph C has four faces (don't forget the external face).
( v ) could represent a tetrahedron.K4 

[ 5 marks ]


Answer 2


( 0,  0,  0,  0 ) ( 1,  1,  1,  1 )( 0,  0,  1,  1 )

( 0,  1,  1,  2 ) ( 1,  1,  2,  2 ) ( 1,  1,  1,  3 )

( 0,  2,  2,  3 ) ( 2,  2,  2,  2 ) ( 1,  2,  2,  3 )

( 2,  2,  3,  3 ) ( 3,  3,  3,  3 )
[ 6 marks ]
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Answer 3
( i ) Let the number of vertices and edges in a simple graph G be n and m

respectively and label the vertices with the numbers 1, 2, ..., n.
Let the degree at each vertex be denoted by d1, d2, ..., dn.
Consider each edge in turn.
Each has two ends that terminate at two distinct vertices.

    ∑
n

1

di  Thus the total degree count is increased by 2 by each edge.

As there are m edges altogether the desired result follows, that

        ∑
n

1

di = 2m         ¸

[ 4 marks ]
( ii ) A graph can be used to represent a gathering of  people  shaking  hands.

Each person at the gathering is represented by a vertex. An edge
between two vertices indicates those two people have shaken hands.
The degree of a vertex then denotes the total number of distinct people
that the associated person has shaken hands with. Of course, one
handshake (one edge) involves two people (two vertices) and so the
total number of people who have shaken hands is twice the number of
distinct handshakes that have taken place.

[ 2 marks ]
( iii )



Lemma 1.1 : The Even Number of Odds
Every graph has an even number of odd-degree vertices.


Any graph can be considered to be constructed from p vertices  of  even
degree and q vertices of odd  degree.  Label  the  vertices  of  the  graph

      d1, d2, ..., dpsuch that the even degree vertices are

     dp + 1, dp + 2, ..., dp + qand the odd degree vertices are 

    ∑
p

1

di + ∑
p + q

p + 1

diThe total degree count is then given by,

Regardless of whetherp is odd or even, the sum of all the even degree
vertices will be even. This is because both an odd number of even
numbers and an even number of even numbers is even.
By way of deriving a contradiction, suppose that a graph has an odd
number of vertices,q, of odd degree. Now, an odd number of odd
numbers is odd. So we have a total degree count that is the sum of an
even and an odd number which is odd. However, from the handshake
lemma we know that the total degree count must be even.
This contradiction shows that the assumption that there can be an odd
number of vertices,q, of odd degree is false. Thus we deduce that the
number of vertices, q, of odd degree must be even.              ̧

[ 5 marks ]
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Answer 4
( i ) From the handshaking lemma we can determine m the number of edges,

∑
20

1

di = 2m

     20 × 3 = 2m As each of the 20 vertices is of degree 3

m = 30  edges

Now, from Euler's Polyhedral Formula, the number of faces is found,

n − m + f = 2

20 − 30 + f = 2

f = 12             faces

[ 4 marks ]
( ii ) Generalising the part (i) answer,

np = 2m ⇔ m =
 np 
 2 

n −
 np 
 2 

+ f = 2 ⇔ f = 2 − n +
 np 
 2 

This shows that either the regularity or the number of vertices must be
even as               ̧n, m, f , p ∈ Z+

[ 4 marks ]
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Answer 5


Lemma 1.2 : Edge Count of a Complete Graph (A Clique)

   Kn   
 n ( n − 1 )  

 2 
 The complete graph has exactly edges


Proof (by induction)

  m(n) =  
 n ( n − 1 )  

 2 
,   n ∈ Z

+
Let  

where n is the number of vertices of and  the corresponding number of edges.Kn m(n)

    n = 1,   m(1) =
 1 ( 1 − 1 )  

 2
When

        =  0   which is clearly true.
(The complete graph with one vertex, has no edges)K1,  

    n = k,  m(k) =
 k ( k − 1 )  

 2 
Assume that when

If one additional vertex is added, it must connect to the k existing vertices.

  m( k + 1 ) = m(k) + kIn consequence,

=
 k ( k − 1 )  

 2 
+ k

=
 k2 − k 

 2 
+

 2k 
 2 

=
 k2 + k 

 2 

=
 ( k + 1 )  k 

 2 

=
 ( k + 1 )  ( ( k + 1 ) − 1 )  

 2 
        

  m(k)   k + 1Which is precisely the assumed formula for with k replaced with

  m(n)  n = k,Therefore, if is the number of edges when 

          m(n)   n = k + 1then is also the number of edges when

   m(n)  n = 1, m(n)  As is the number of edges when is also the number of edges

  n ∈ Z
+            ¸for all  by mathematical induction.

[ 6 marks ]
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Answer 6
( i ) On trying to draw a 3-regular graph on 5 vertices, it's immediately apparent

that it can't exist;

From the Handshaking Lemma (See question 3(i)) we know that the sum
of all vertex degrees is twice the sum of the edges. We are trying to create
graph that will have a vertex sum of 5 × 3 but this is twice 7.5 edges and
so can't exist. In the figure you can literally see the 7.5 edges where the
0.5 edge has “nowhere to go”.
Alternatively, invoke the result from question 3(iii) which stated that the
number of vertices of odd degree must be even. We are trying to create a
graph where the number of vertices of odd degree is odd.

[ 3 marks ]
( ii ) The above reasoning will apply to a r-regular graph on n vertices where

the degree sum is given by rn and the number of edges by half of that. If
r and n are both odd then their product is also odd and so not divisible by 2
which indicates that there will then be an edge with “nowhere to go”.

      m =  
 rn 
 2 

 That is, is not an integer number of edges when r and n are odd.

[ 3 marks ]

Answer 7


Lemma 1.3 : Vertex Pair Of Equal Degree
In any finite simple graph with at least two vertices, there must be at least two
vertices which have the same degree.


Proof  (By contradiction)
First a reminder that in asimple graph there is, at most, one edge between any
vertex pair. In a graph withn vertices, a vertex can, at most, connect to all of the
other  vertices. Suppose that there exists a graph withn vertices that
have the different degrees. Counting down from the maximum degree of

 these must be given by,

( n − 1 )

( n − 1 )
{ d1, d2, d3, ..., dn } = { 0,  1,  2,  ...,  n − 1 }

However, this requires that the graph have a vertex with degree  and
another of degree 0 which is a contradiction because the vertex of degree

 Thus there must be at least two
vertices of the same degree.              ̧

( n − 1 )

( n − 1 )  has to connect to all other vertices.

[ 4 marks ]



22 : Graph Theory I

Answer 8
It is the wording of this question that is most likely to cause difficulty !
“Let G be a graph with nine vertices such that each vertex is of either degree 5 or
of degree 6. Show thatG has at least six vertices of degree 5, or at least five
vertices of degree 6”.
By way of understanding the question let's initially take an unsophisticated
approach and say that the nine vertices could divide between those of degree 5
and those of degree 6 as follows,

9 × 5 + 0 × 6
8 × 5 + 1 × 6
7 × 5 + 2 × 6
6 × 5 + 3 × 6
5 × 5 + 4 × 6
4 × 5 + 5 × 6
3 × 5 + 6 × 6
2 × 5 + 7 × 6
1 × 5 + 8 × 6
0 × 5 + 9 × 6

The top 4 rows of this table are the “at least six vertices of degree 5” and the
bottom 5 rows are the “at least five vertices of degree 6”.
So the only row that is not covered and for which a reason needs to be given for
its removal is the 5 vertices of degree 5 and 4 vertices of degree 6. 
This is readily done using the fact from question 3(iii) that the number of
vertices in a graph of odd degree must be even.
After applying this criteria the table becomes,

8 × 5 + 1 × 6

6 × 5 + 3 × 6

4 × 5 + 5 × 6

2 × 5 + 7 × 5

0 × 5 + 9 × 6

and each row does now indeed satisfy the claim in the question.              ̧
[ 4 marks ]
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Answer 9
In order to maximise the number of possible edges, we need to minimise the
amount of disconnectedness. This will be achieved by having a graph that
is only in two separated pieces, each of those pieces being maximally connected.
Let k be the number of vertices in the first such piece and be the number( n − k )  
of vertices in the second piece (such that the sum of all the vertices in the two
pieces is n). From question 5 it is known that the complete graph  has exactlyKn

  
 n ( n − 1 )  

 2 
  

 k ( k − 1 )  
 2 

 edges.  So the first piece has edges and the second piece

   
 ( n − k ) ( n − k − 1 )  

 2 
 has edges. In total the number of edges in given by,

E (k) =
 k ( k − 1 )  

 2 
+

 ( n − k ) ( n − k − 1 )  
 2 

=
 k2 − k + n2 − nk − n − nk + k2 + k 

 2 

=
 2 k2 − 2nk − n + n2 

 2 
For any given graph, n is a fixed constant, and it is k that varies.

     1 ≤ k ≤ n − 1In fact,

  E′ (k) = 2k − n E (k)  k =
 n 
 2 

 and this gives that is a minimum when 

In other words, the least number of edges is obtained by having as close to half
of the vertices in each piece of the disconnected half.
The maximum number of edges, which is what we are after, will thus occur at the
extremes of the inequality for k (as it's a right way up quadratic, ∪).

    k = 1,              E (1) =
 2 − 2n − n + n2 

 2 
When

                =
 ( n − 2 ) ( n − 1 )  

 2

    k = n − 1,  E ( n − 1 ) =
 2 ( n − 1 )2 − 2n ( n − 1 ) − n + n2 

 2 
When

         =
 2 n2 − 4n + 2 − 2n2 + 2n − n + n2 

 2 

         =
 n2 − 3n + 2 

 2 

         =
 ( n − 2 ) ( n − 1 )  

 2 
Thus, the maximum number of edges in a disconnected graph occurs when there is
 a single isolated vertex, the remaining vertices forming a complete graph with the

   Kn − 1 =
 ( n − 2 ) ( n − 1 )  

 2
         ¸number of edges given by

[ 6 marks ]
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Answer 10
( i ) This can be proven using induction.

     s(x)  Let denote the number of subsets that a set S of x elements can have.

      s(x) = 2xThe result to be proven is that

As the base case suppose we have a set of one element.
There are two possible subsets, either the empty set, or the set with the 
element in it.

     s(1) = 21 = 2  Thus is established as a basis for the induction.

      s(k) = 2k  Assume that for some positive integer value of k.

Now consider enlarging the number of elements of set S by one.

    s(k)  For each of the subsets of a pair of subset will be counted by 

    s(k + 1)  one from adding the new element and one from not adding it.

    s(k + 1)  s(k) .In consequence the count for will be twice that of 

s(k + 1) = 2 × s(k)

= 2 × 2k by assumption

= 2k + 1

    s(k)   k + 1which is precisely the assumed formula for with k replaced with

    s(n)  n = k,Therefore, if is the number of subsets when 

    s(n)   n = k + 1then is also the number of subsets when

     s(n)  n = 1, s(n)  As is the number of subsets when is also the number of

  n ∈ Z
+     subsets for all  by mathematical induction.

[ 3 marks ]

  MMAX ( ii ) Let be the maximum possible number of edges, and label these.

Between any pair of vertices there is either an edge or there is not.
Determining the number of possible graphs now corresponds to determining
the number of possible subsets for a set of x elements which, from part (i)

    2x.  2MMAX.is given by That is

The graph on n vertices with the maximum possible number of edges is 
the complete graph From question 5,Kn. 

“  Kn   
 n ( n − 1 )  

 2 
 ”the complete graph has exactly edges

      2
 1 
 2 

 n( n − 1 )    ¸ Thus there are exactly labelled simple graphs on n vertices.

[ 3 marks ]
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Answer 11
( i )

( 1,  1,  2,  2 ) ( 1,  1,  2,  3,  3 )( 1,  1,  2,  2 ) ( 1,  1,  2,  3,  3 )
[ 2 marks ]

( ii ) On a graph of n vertices, the maximum degree at any vertex is n − 1 
which occurs when that vertex has an edge going to each of the other

vertices. In section 1.6 it was observed that “the graph sumn − 1 
G + on graph of degree n is the complete graph ”.G

 Kn

     di  di


So, if the degree of vertex i is and the degree of its complement

      di + di


= n − 1then

d1


= dn,Also, it must be the case that,  

 d2


= dn − 1

... = ...

di


= dn − ( i − 1 )   

       di


= dn + 1 − iThat is,

      di + dn + 1 − i = n − 1Combining the two results gives that

[ 2 marks ]
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( iii ) From question 5,

“Kn   
 n ( n − 1 )  

 2 
 ”has exactly edges

is obtained the fact that the complete graph will have 10 edges.K5 
It is then deduced that a self-complementary graph on n vertices will
have half of this, which for n = 5 is 5 edges.
The handshaking lemma then states that the sum of degrees will
be double this, which in this case is 10.
The part (ii) symmetry result implies that the degree sequence must be, 

( d1, d2, d3,  4 − d1,  4 − d2 )
    In combination we have that,

d1 + d2 + d3 + 4 − d1 + 4 − d2 = 10

  d3 = 2from which we get that

The possibilities are now,

case d1 + d2 + d3 + d4 + d5

1 0 + 0 + 2 + 4 + 4

2 0 + 1 + 2 + 3 + 4

3 0 + 2 + 2 + 2 + 4

4 1 + 1 + 2 + 3 + 3

5 1 + 2 + 2 + 2 + 3

6 2 + 2 + 2 + 2 + 2

This list can be pruned further,
Cases 1, 2 and 3 require that we have a graph on 5 vertices that has a
vertex of degree 4 and one of degree 0 which is clearly not possible as
illustrated by the diagram below.

Out of interest, readers may like to note that Case 4 is satisfied by the
graph on 5 vertices from part (i) which is the only graph (up to
isomorphism) to do so. Case 6 is satisfied byas noted is section 1.6
which, again, is the only graph (up to isomorphism) to do so.

C5 

Case 5 yields no self-complementary graphs.
[ 4 marks ]
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( iv ) The idea here is to generalising slightly the approach taken in part (iii)
starting again will the result from question 5 that

m(Kn) =   
 n ( n − 1 )  

 2 
Again it is deduced that a self-complementary graph onn vertices,
will have half that number of edges,

Gn,

m(Gn) =
 n ( n − 1 )  

 4 
As n  and represent two consecutive integers they cannot
both be even. Furthermore, must be an integer and so eithern is
divisible by 4 or is divisible by 4. In other words the number
of vertices of a self-complementary graph, has the
form 4k or 4k + 1 for k ∈  which is the result requested.              ̧

 ( n − 1 )   
m(Gn)  

( n − 1 )  
n (Gn) , (or just n) 

Z+

[ 5 marks ]

( v ) Case 1 : For a graph of order 4k, from part (iv),

 4k ( 4k − 1 )  
 4 

= k ( 4k − 1 )  edges

From the handshaking lemma, the sum of the degrees of all vertices will
be but this cannot be shared equally among 4k vertices.2k ( 4k − 1)  
That is,

   
 2k ( 4k − 1 )  

 4k 
=

 4k − 1 
 2 

 k ∈ Z  .with is not an integer

Thus, n ≠ 0 (mod 4)

Case 2 : For a graph of order 4k + 1, from part (iv),

 ( 4k + 1 )  ( 4k + 1 − 1 )  
 4 

= k ( 4k + 1)  edges

From the handshaking lemma, the sum of the degrees of all vertices will
be which can be shared equally among the 4k + 1 vertices.2k ( 4k + 1)  
Thus, n ≡ 1 (mod 4)

Overall we conclude that if G is a self-complementary regular graph on
n vertices then n ≡ 1 (mod 4)             ̧

[ 5 marks ]

This document has been prepared for the School of Computing and Engineering at Derby University, England
It may be freely duplicated and distributed, unaltered, for non-profit educational use

© 2023 Number Wonder
Unrestricted access to the exercise solutions is provided in return for notifying typographical and other errors to mhh@shrewsbury.org.uk
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Lecture 2
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

2.1  The Adjacency Matrix
By definition, the verticesv andw of a graph areadjacent vertices if they are
joined by an edge,e. If G is a graph withn vertices (labelled 1, 2, 3, ...,n) then
the adjacency matrixA  of G is then × n square matrix in which the entry

is the number of edges joining the verticesi andj. For a graph that issimple
the entry can only be 0 or 1. Below, as an example, is the graph G94 which has
been labelled and next to it is given its adjacency matrix.  The top row of this
adjacency matrix shows that the vertex labelled1 is connected only to the vertex
labelled 2, the second row shows that the vertex labelled2 has a direct
connection to the vertices labelled1, 3 and4, and subsequent rows show how
the remaining vertices connect.

(G)
aij  

n = 6,    m = 6

(1,  1,  1,  3,  3,  3)

G94 - Labelled
1

2

3 4

5 6

( 94) = ( )A G

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

In general the adjacency matrix of a simple graph will be symmetric and have a
leading diagonal of all zeros. Interest in adjacency matrices centres around
identifying properties of graphs that are captured by them. For example, the trace
of a square matrix is the sum of its diagonal entries and denoted bytr(A). It turns

out that  gives twice the number of edges of the associated graph andtr ( 2)A
tr ( 3)  A gives six times the number of triangles, as illustrated below.

2
( = ( ) ⇒ tr ( 2

( )) = 12   ∴ 6 edgesA G94)

1 0 1 1 0 0
0 3 1 1 1 1
1 1 3 1 0 1
1 1 1 3 1 0
0 1 0 1 1 0
0 1 1 0 0 1

A G94

3
( ) = ( ) ⇒ tr ( 3

( ) = 6     ∴ 1 tr iangleA G94

0 3 1 1 1 1
3 2 5 5 1 1
1 5 2 5 3 1
1 5 5 2 1 3
1 1 3 1 0 1
1 1 1 3 1 0

A G94)
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Performing calculations and manipulations on large matrices is tedious by hand
and more reliably done using computer software.
Let φ  denote the characteristic polynomial of A .(X, x) (x)
For the adjacency matrix A(G94) software gives its characteristic equation as,

φ (X, x) = ( x2 − 2x − 1 ) ( x2 + x − 1 )2
The spectrum of a matrix is the list of its eigenvalues together with their
multiplicities. For A(G94) the spectrum is,



 1 ±  2 ,  

− 1 ±  5  
 2 

(2)



where the superscripts give the multiplicities that are greater than one.

    α = 1 ±  2  ,    β =
− 1 ±  5  

 2 
  Let and

  The six eigenvectors of A(G94) are then,

v (λ = α) = ( )  v (λ = β) = ( ) ,  ( )1
α
α
α
1
1

− 1
− β
0
β
0
1

− 1
− β
β
0
1
0

Of ongoing interest is determining if two graphs are isomorphic from the
mathematics associated with them. If two graphs,G andH are isomorphic then,
although they have different adjacency matricesA(G) andA(H), they will have
the same characteristic equation and spectrum. However, this cannot be used the
other way round; cospectral graphs are not isomorphic, yet have the same
characteristic equation and spectrum.

n = 6,    m = 7 n = 6,    m = 7

G115 G117

( 1,   2,  2,  5 ) ( 1,  1,  3,  3,   )2, 2, 3, 3

G115 and G117 provide an example of cospectral graphs. They are clearly not
isomorphic as G115 has one vertex of degree 1 (a leaf) whereas G117 has two.
Yet they both have the same characteristic equation.

φ ( 115, x) = φ ( 117, x) = ( x − 1|) ( x + 1|)2 ( x3 − x2 − 5x + 1 )G G
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An objective of this lecture is to show that, in spite of the cospectral set back, it
is possible to determine if two graphs are isomorphic from their adjacency
matrices. However, to do so requires the prior development of a few ideas and it
is to these we now attend.

2.2  Transposed Matrices
Here is a brief reminder of what the transpose of a matrix is.

The Transpose of an n × n Matrix

  = ( )   Given the matrix M

a11 a12 ... a1n

a21 a22 ... a2n

... ...   ... ...
an1 an2 ... ann

the transpose of matrix M

   is denoted M
T

and is formed by an interchange of rows and columns.

  = (  )Thus, M
T

a11 a21 ... an1

a12 a22 ... an2

... ... ... ...
a1n a2n ... ann

2.3  Symmetric Matrices

  . A matrix, M , is symmetric if  M  = M
T

 Such matrices are readily recognised for

their elements are symmetric with respect to the leading diagonal. The adjacency
matrix of a graph is symmetric as are powers of that matrix which means that the
properties of such matrices will be of importance. 

2.4  Permutation Matrices
A permutation matrix,P, is ann × n square matrix such that each row and each
column contains a single element equal to 1, the remaining elements being 0. 
Consider the following calculation which involves a permutation matrix, 

( ) ( ) = ( )0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

a
b
c
d
e

d
b
a
e
c

This permutation matrix has permutated the letters a, b, c, d, e  as shown below,

( )a b c d e

↓ ↓ ↓ ↓ ↓
d b a e c

In cycle notation this permutation could be written (adec)(b) or just (adec).
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A permutation matrix can permutate an entire matrix in two different ways as the
following two calculations illustrate,



( ) ( ) = ( )0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

a f k p u

b g l q v

c h m r w
d i n s x
e j o t y

d i n s x
b g l q v

a f k p u

e j o t y

c h m r w


( ) ( ) = ( )a f k p u

b g l q v

c h m r w
d i n s x
e j o t y

0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

p f a u k

q g b v l

r h c w m
s i d x n
t j e y o


In the first calculation it is the rows of the lettered matrix that have been
permutated. Notice that in the second of these calculations the transpose of the
permutation matrix has been used. In this calculation it is the columns of the
lettered matrix that have been permutated. 

All of this illustrates the next theorem.


Theorem 2.1 : Permutating Rows and Columns
Given a square matrix,S, and a permutation matrix,P, multiplying byP on the

left permutates the rows ofS, whilst multiplying byP on the right permutates
the columns. 

 T

PS permutates rows of S

 SP
T

permutates columns of S

In general there aren! permutation matrices of sizen × n. Of the six 3 × 3
permutation matrices three are elementary permutation matrices that swap just
two rows or two columns. Here are those six matrices. Those that are elementary
are highlighted in red, and the (left multiplying) permutating effect they would

have on the column vector  is given immediately underneath each.(a, b, c)T


( ) , ( ) , ( ) , ( ) , ( ) , ( )1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

0 0 1
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

(a) (b) (c)         (bc)             (ac)             (ab)            (acb)           (abc)  


In general, of then! permutation matrices of dimensionn × n the number that are
elementary is given by the triangular number  where,Tn − 1

Tn =
 n ( n + 1 )  

 2 
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Clearly, any permutation matrix raised to a sufficient power will yield the
identity matrix,I . The following demonstrates this fact for each of the six 3× 3
permutation matrices;



( ) ( )2 ( )2 ( )2  ( )3 ( )31 0 0
0 1 0
0 0 1

 = 
1 0 0
0 0 1
0 1 0

= 
0 0 1
0 1 0
1 0 0

= 
0 1 0
1 0 0
0 0 1

=
0 0 1
1 0 0
0 1 0

= 
0 1 0
0 0 1
1 0 0

(a) (b) (c)  =     (bc)2   =    (ac)2    =    (ab)2     =   (acb)3   =  (abc)3      


In general, a non-elementary permutation matrix can be decomposed into a
product of elementary permutation matrices. Again, this is a fact that can be
demonstrated for the 3 × 3s, although there is a catch, shortly to be explained;



( ) ( )2 ( )2 ( )21 0 0
0 1 0
0 0 1

 = 
1 0 0
0 0 1
0 1 0

= 
0 0 1
0 1 0
1 0 0

= 
0 1 0
1 0 0
0 0 1

(a) (b) (c)  =     (bc)2   =    (ac)2     =    (ab)2     


( ) = ( )  ( )0 1 0
0 0 1
1 0 0

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

(abc)    =      (ac)           (ab)


( ) = ( ) ( )0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

(acb)    =      (ab)           (ac)


The astute reader looking at the above three matrix equations may be wondering

  ( )  why the matrix 
1 0 0
0 0 1
0 1 0

can be associated with different permutations. This is

a much glossed over issue that an internet search will do little to explain. When

this matrix acts on  it represents the permutation (bc). However when

it acts upon  it represents (ac) and when it acts upon  it
represents the permutation (ab). Marrying up a matrix with the permutation it
represents is not as straight forward as one might initially have expected; it
depends upon how preceding matrices have permutated the rows (or columns).

(a, b, c)T

(b, a, c)T (c, b, a)T

Permutations and their manipulation in cycle notation are covered in the Number
Wonder undergraduate lectures, Group Theory II.
https://www.NumberWonder.co.uk/Pages/Page9110.html

https://www.NumberWonder.co.uk/Pages/Page9110.html
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2.5  Orthogonality
A matrix, Q, is described as being orthogonal if it is a real square matrix and has

the property thatQQ  = Q Q = I  whereQ  is the transpose ofQ andI  is the
identity matrix. This immediately leads to an equivalent characterization of

orthogonality; Q is orthogonal if its transpose is equal to its inverse, if Q  = Q

T T T

T



Definition : An Orthogonal Matrix
A real matrix is orthogonal iff it is invertible and its inverse is its transpose.


The interest in orthogonality stems from the fact that permutation matrices have
this property. For example, here the permutation introduced at the start of section
2.4 is multiplied by its transpose and the result, as claimed, is indeed the 5× 5
identity matrix,

( ) ( ) = ( )0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Theorem 2.2 : Permutation Matrices are Orthogonal
The product of a permutation matrix and its transpose gives the identity matrix.

      =  ⇔  
− 1

=That is, P P
T

I P P
T

If follows that permutation matrices are orthogonal.

Proof
Clearly then × n identity matrix,I , is orthogonal for all positive integer values of
n. If any two rows inI  or any two columns inI  are swapped the result is an
elementary permutation matrix which retains the property of being orthogonal
because it is still symmetric and still coincides with its inverse. This proves the
theorem in the case of the elementary permutation matrices. 
Any non-elementary permutation matrix,P, can be decomposed into a product of
elementary permutation matrices, P1P2 ... P  and we now argue as follows;k

− 1 ( 1 2 ... k)
− 1 − 1

k ... 
− 1
2

− 1
1 k  ... 2  1 ( 1 2 ... k)P  = P P P  = P P  P  = P

T
P

T
P

T
 = P P P

T
 = P

T

which completes the proof.
             ̧

2.6  Isomorphism
For two graphs to be isomorphic there are many properties that must be
common. They must have the same number of vertices, or edges, or spectrum,
for example. However, non isomorphic graphs can have the same number of
edges, for example, and it was shown previously that non isomorphic graphs can
even have the same spectrum (cospectral graphs). Determining if two graphs are
isomorphic or not can be a frustrating business. As all of the structure of a graph
is captured by its adjacency matrix it is in principle possible to determine if two
graphs are isomorphic. Write down the adjacency matrix of each, and then
search for a permutation matrix for which Theorem 2.3, stated next, holds. 
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Theorem 2.3  :  Isomorphism  via Adjacency Matrices 
Let G andH be graphs on the same vertex set and with adjacency matricesA(G)
and A(H) respectively. ThenG andH are isomorphic if and only if there is a
permutation matrix P such that,

(G)   = (H)P
T
A P A


Being able to state Theorem 2.3 and to have developed the mathematics to
understand what it is saying has been the goal of this lecture. However, in some
respects it is a damp squib. This is because in practice, theorem 2.3 is of limited
use in the general case; for a graph withn vertices, there aren! candidates to be
the sought after permutation matrix.

2.7  Exercises
Marks Available : 80

Question 1
( i ) Write down the adjacency matrix A(G17) for G17, shown below,



n = 4,    m = 5

(2,  2,  3,  3   )

G17 - Labelled

12

3 4

[ 2 marks ]

  
2

(  ( ii ) By hand, write down the matrix  A G17)which will give the number

of walks of length 2 between the various vertices.

[ 2 marks ]
( iii ) Verify from the graph of G17 that there are three walks of

length 2 between vertex 1 and itself.

[ 1 mark ]
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Question 2

  = ( )   Let A

a11 a12 ... a1n

a21 a22 ... a2n

... ...   ... ...
an1 an2 ... ann

be the adjacency matrix of a labelled graph G

   aij  vi  vj,  where the entry is 1 if there is an edge between vertex and and 0 otherwise.

  
2

( i ) Write down an expression for the top left entry of A

[ 1 mark ]
( ii ) Explain why this counts the number of walks of length 2 between 

vertex 1 and itself.

[ 2 marks ]

  ( iii )  Building on your part (ii) answer, explain why   gives twice  tr ( 2)A

    the number of edges of the associated graph.

[ 2 marks ]

  
2

= ( )( iv ) A graph, H, has adjacency matrix H such that  H

1 0 1 1
0 3 1 1
1 1 2 1
1 1 1 2

Draw the graph of H.

[ 2 marks ]



36 : Graph Theory I

Question 3
The graphs G991 and G1008, shown below, are clearly not isomorphic as they have
different degree sequences.



n = 7,    m = 12

(2,  3,  4,  4,   

G991 - Labelled

4

3,

312

5

6 7

4,  4  )
n = 7,    m = 12

(3,  3,  3,  3,   

G1008 - Labelled

1

3,

23

4

5 6

7

3,  6  )


( i ) Write down the adjacency matrix for each graph.

[ 2 marks ]
( ii ) Use software to find the characteristic polynomials for G991 and 

G1008 and hence deduce that these two graphs are cospectral.

[ 4 marks ]

( iii ) Find the characteristic polynomial for the square of each adjacency
matrix and comment.

[ 4 marks ]
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Question 4


Theorem 2.4 : Counting walks between vertices
Given a simple graph G with adjacency matrix A, raising A to the power n gives
a matrix where the entry  gives the number of walks of length n between theaij

vertices vi  vjand


Write out a proof by induction for Theorem 2.4

[ 6 marks ]
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Question 5

  For a simple graph G with adjacency matrix A, explain why tr ( 3)  A gives six times

the number of triangles in G.  
You may quote Theorem 2.4 (from question 4) as a part of your explanation.

[ 4 marks ]

Question 6


Lemma 2.1 : Disconnected Detector
For a graph G of order n and adjacency matrix A, calculate matrix S  where,n

n = +
2

+
3

+ ... +
n

S A A A A

If there are any zeros in S  then the graph is not connected.n


Give a short proof of Lemma 2.1
You may quote Theorem 2.4 (from question 4 )as a part of your explanation.

[ 3 marks ]
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Question 7


Lemma 2.2  Shortest Path Between a Vertex Pair
For a graph G of order n and adjacency matrix A, calculate matrix S  where,k

k = +
2

+
3

+ ... +
k
,    k ≤ nS A A A A

The entry in row i and column j of matrix S  tallies the number of ways to getk

from vertex to vertex in k steps or less. (A step is the traversal of an edge).vi vj 
To find the shortest number of steps between and  begin to calculate thevi vj 
partial sums S1, S2, S3, ..., S . Then, the first value of k for which the entry inn

row i and column j of matrix S  is non-zero is the shortest number of steps.k



  = ( )A graph, G, has adjacency matrix,  A

0 1 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

( i ) As necessary, use software to write down A1, A2, A3 and A4

[ 4 marks ]

( ii ) Use your part (i) answer to write out the Shimbel Matrix, M , for G
where the entry row i and column j of matrix M  is the least number 
of steps between the vertices and vi vj 

[ 3 marks ]

( iii ) The diameter of a graph is the shortest path between the most distant 
distant minimum vertices. This is the largest value in the Shimbel Matrix.
State the diameter of G.

[ 1 mark ]
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Question 8
A “simple” 4-cycle is a closed walk around four distinct vertices of the form
va vb vc vd va -  -  -  - 
This excludes walks of the form  va vb va vb va -  -  -  - 

  and va vb va vd va -  -  -  - 
  and va vb vc vb va -  -  -  - 



Algorithm 2.1 : Counting Simple 4-Cycles
For a graph G with adjacency matrix A, the number of proper 4-cycles is,

 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) −  tr ( 2))A A


( i ) From question 1, for the graph of G17 we know that,



n = 4,    m = 5

(2,  2,  3,  3   )

G17 - Labelled

12

3 4

 = ( )A(G17)

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

2
= ( )A (G17)

3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2


Show that Algorithm 2.1 correctly finds a single simple 4-cycle in G17.

[ 3 marks ]
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( ii ) Use Algorithm 2.1 to find the number of simple 4-cycles in the graph
G877 which is shown below. This graph is sufficiently small so that
you can see what the correct answer should be !



2 1

3 4

5

67

8

910

11

[ 4 marks ]
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Question 9
Using matrix methods, how many simple 4-cycles are there in the graph,

   K4( i )

[ 2 marks ]

   K7( ii )

[ 3 marks ]

   Kn( iii )

[ 5 marks ]
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Question 10


Algorithm 2.2 : Counting Simple 5-Cycles
For a graph G with adjacency matrix A, the number of proper 5-cycles is,

 1 
 10 ( tr ( 5) − 5 ∑

n

i = 1

(( a(3)
ii  ) (a(2)

ii − 2)) − 5 tr ( 3))A A


Shown is the graph and adjacency matrix for the Petersen graph.


1

2

3 4

5

6

7

8
9

10 = ( )A

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0


Use Algorithm 2.1 to find the number of simple 5-cycles in the Petersen graph.

[ 5 marks ]
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Question 11
The purpose of this question is to investigate the isomorphisms (if any) between
the three (labelled) graphs presented below.


1

2 3

4
56

7 8

9
10

11

12

1

2

3

4

5

6

7
8

9

10
11

12

1

2 3 4

567

8

9
10 11

12


( i ) State the number of vertices of each graph.

Does this identify if any of the three are non-isomorphic to the others ?

[ 1 mark ]

( ii ) State the number of edges of each graph.
Does this identify if any of the three are non-isomorphic to the others ?

[ 1 mark ]
( iii ) State the degree sequence of each graph.

Does this identify if any of the three are non-isomorphic to the others ?

[ 1 mark ]

( iv ) Construct the adjacency matrix for each graph.

[ 3 marks ]
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( v ) Use computer software to cube each graph's adjacency matrix.

For each of these matrices calculate .tr ( 3 )A
Hence state the number of triangles in each graph.
Does this identify if any of the three are non-isomporphic to the others ?

[ 3 marks ]

( vi ) Use software to determine the characteristic equation for each graph's
adjacency matrix and hence find the associated spectrum.
Does this identify if any of the three are non-isomporphic to the others ?

[ 6 marks ]

This document has been prepared for the School of Computing and Engineering at Derby University, England
It may be freely duplicated and distributed, unaltered, for non-profit educational use

© 2023 Number Wonder
Unrestricted access to the exercise solutions is provided in return for notifying typographical and other errors to mhh@shrewsbury.org.uk
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2.8  Answers to 2.7 Exercise
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

Answer 1

  = ( )( i ) A(G17)

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

[ 2 marks ]

  
2

= ( ) ( ) = ( )( ii ) A (G17)

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2

[ 2 marks ]
( iii ) The three walks of length 2 between vertex 1 and itself are,



n = 4,    m = 5

(2,  2,  3,  3   )

G17 - Labelled

12

3 4

[ 1 mark ]
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Answer 2

2
= ( ) ( ) = ( )A

a11 a12 ... a1n

a21 a22 ... a2n

... ...   ... ...
an1 an2 ... ann

a11 a12 ... a1n

a21 a22 ... a2n

... ...   ... ...
an1 an2 ... ann

b11 b12 ... b1n

b21 b22 ... b2n

... ...   ... ...
bn1 bn2 ... bnn

   b11 = (a11 a11) + (a12 a21) + (a13 a31) + ... + (a1n an1)( i )

      aij   aji , b11 (a11)2 (a12)2 (a13)2 ... (a1n)2As A is symmetric, = so  =  + +  +  +

[ 1 mark ]

  a11 (a1k)2  ( ii ) Now, is always zero, and each of the squares for 2 ≤ k ≤ n

will be 1 when there is an edge between vertices and  0 otherwise.v1 vk,
     b11 v1 Thus gives the degree of vertex and also the number of walks of

     v1 length 2 between and itself. ¸
[ 2 marks ]

   ( iii )   will give the sum of the degrees of all vertices in G which,tr ( 2)A

by Theorem 1.2, The Handshaking Lemma, is twice the number of
edges of G.

[ 2 marks ]

  
2

= ( )( iv ) H

1 0 1 1
0 3 1 1
1 1 2 1
1 1 1 2

The graph H has 4 vertices and degree sequence (1, 2, 2, 3).
This is enough to identify the graph as being G15



n = 4,    m = 4

(1,  2,  2,  3   )

G15

[ 2 marks ]
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Answer 3


n = 7,    m = 12

(2,  3,  4,  4,   

G991 - Labelled

4

3,

312

5

6 7

4,  4  )
n = 7,    m = 12

(3,  3,  3,  3,   

G1008 - Labelled

1

3,

23

4

5 6

7

3,  6  )

  = ( )    = ( )( i ) A(G991)

0 1 1 0 0 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 1
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

A(G1008)

0 1 0 0 0 1 1
1 0 1 0 0 0 1
0 1 0 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 1 1 1 1 0

[ 2 marks ]

   φ ( 991) = φ ( 1008) = ( x − 1|)2 ( x + 1|)2 ( x + 2 ) ( x2 − 2x − 6 )( ii ) G G

The two graphs are not isomorphic, yet their adjacency matrices have the
same characteristic equation which, by definition, makes them cospectral.

[ 4 marks ]

  
2

= ( )   
2

= ( )( iii ) A (G991)

2 0 0 1 1 1 1
0 3 1 2 1 1 2
0 1 3 1 2 2 1
1 2 1 4 2 2 3
1 1 2 2 4 3 2
1 1 2 2 3 4 2
1 2 1 3 2 2 4

A (G1008)

3 1 2 1 2 1 2
1 3 1 2 1 2 2
2 1 3 1 2 1 2
1 2 1 3 1 2 2
2 1 2 1 3 1 2
1 2 1 2 1 3 2
2 2 2 2 2 2 6

    φ2 ( = φ2 ( ( x − 4|) ( x − 1|)4 ( x2 − 16x + 36 )G991) G1008)=

Comment : The hope that the characteristic polynomials of the squares of
the adjacency matrices might distinguish between the cospectral graphs is
fundamentally flawed because,

    
n
 λn ”“The matrix A has eigenvalue where λ is an eigenvalue of A

This statement may be proven using induction.
For a proof see Number Wonder's Matrix Algebra, Lecture 1, Question 5
https://www.NumberWonder.co.uk/Pages/Page9116.html

[ 4 marks ]

https://www.NumberWonder.co.uk/Pages/Page9116.html
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Answer 4


Theorem 2.4 : Counting walks between vertices
Given a simple graph G with adjacency matrix A, raising A to a positive integer
power n gives a matrix where the entry  gives the number of walks of length naij

between the vertices vi  vj and


Proof

  
1

 To establish a basis for a proof by induction let n = 1 giving A  = A which is the

adjacency matrix for G in which entry counts the number of walks of length 1a(1)
ij  

between . As G is simple this count is either 1 if there is an edge betweenvi and vj

 or 0 if there is no edge.vi and vj

The induction hypothesis is to assume true that when n = k the number of walks

of length k between  in the matrix A .vi and  is the entry vj a(k)
ij

k

We can express a walk of length k + 1 between  of a walk of length k vi and vj

between vi and  followed by a walk of length 1 from to vu vu vj.
In consequence, the number of walks of length k + 1 between and is the sumvi vj 
of all walks of length k from to multiplied by the number of ways to walk invi vu 
one step from to  which is given by,vu vj.

∑
n

r = 1

a(k)
i r  arj

   a(k + 1)
ij  

k + 1
By the definition of matrix multiplication, this is the entry in A

Therefore, if the result is true for  n = k, then it is true for  n = k + 1
As the result has been shown to be true for  n = 1, the conclusion is that
it is true for all positive integers by mathematical induction. ¸

[ 6 marks ]
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Answer 5
From Theorem 2.4 we know that, given a simple graph G with adjacency matrix A,

  
3 ( a(3)

ii )  the elements on the diagonal of A which are of the form will be the walks of

length 3 that start and finish at the same vertex. The only way that a walk of 3 steps
can start and finish at the same vertex is if it is triangular. Let G be of order n.

  
3

 ∑
n

i = 1

 a(3)
ii  The trace of A  is which will be the sum of all triangular walks in G but

with each counted six times as shown below.


           ¸Hence  the number of triangles in G.tr ( 3)  A gives six times

[ 4 marks ]

Answer 6


Lemma 2.1 : Disconnected Detector
For a graph G of order n and adjacency matrix A, calculate matrix S  where,n

n = +
2

+
3

+ ... +
n

S A A A A

If there are any zeros in S  then the graph is not connected.n


Proof
If a graph is connected then the maximum length of a trail (a walk that does not
traverse any edge more than once) is n. From theorem 2.4 we know that entries

   
k
  in the matrixA gives the number of walk of length k between all possible pairs 

of vertices in G. Thus a zero anywhere in the matrix S  is telling us that betweenn

a pair of vertices in the graph there is no walk of length 1, 2, 3, ..., n. Thus there
is a pair of vertices that have no way of connecting to each other.
In other words, the graph is disconnected. ¸

Note that there are other, more efficient, methods (especially as n becomes large)
to determine if a graph is connected or not and, indeed, to determine the number of
component parts.

[ 3 marks ]
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Answer 7
( i )

= ( ) ,  
2

= ( )A

0 1 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

A

1 0 1 1 0 0 0
0 3 1 1 1 0 0
1 1 2 1 1 0 0
1 1 1 3 0 1 1
0 1 1 0 3 1 1
0 0 0 1 1 2 1
0 0 0 1 1 1 2



 
3

= ( ) ,  
4

= ( )A

0 3 1 1 1 0 0
3 2 4 5 1 1 1
1 4 2 4 1 1 1
1 5 4 2 5 1 1
1 1 1 5 2 4 4
0 1 1 1 4 2 3
0 1 1 1 4 3 2

A

3 2 4 5 1 1 1
2 12 7 7 7 2 2
4 7 8 7 6 2 2
5 7 7 14 4 6 6
1 7 6 4 13 6 6
1 2 2 6 6 7 6
1 2 2 6 6 6 7

[ 4 marks ]
( ii ) The Shimbel Matrix, M , is,

= ( )M

2 1 2 2 3 4 4
1 2 1 1 2 3 3
2 1 2 1 2 3 3
2 1 1 2 1 2 2
3 2 2 1 2 1 1
4 3 3 2 1 2 1
4 3 3 2 1 1 2

[ 3 marks ]
( iii ) Diameter is 4

[ 1 mark ]

Note that another way to answer this question would be to use the adjacency
matrix to draw the graph and then simply study the graph to obtain M . 



(1,  1,  1,  1,  2,  2,  6)

n = 7,    m = 8

G436 - Labelled

5 1

23

4

6 7
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Answer 8

( i )

n = 4,    m = 5

(2,  2,  3,  3   )

G17 - Labelled

12

3 4

 = ( )A(G17)

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

2
= ( )A (G17)

3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2



3
( = ( )  

4
( = ( )A G17)

4 5 5 5
5 2 5 2
5 5 4 5
5 2 5 2

A G17)

15 9 14 9
9 10 9 10
14 9 15 9
9 10 9 10


By Algorithm 2.1, the number of simple 4-cycles is given by,

 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) − tr ( 2))  A A

=
 1 
 8 

( 50 − 2 ( 3 × 2 + 2 × 1 + 3 × 2 + 2 × 1 ) − 10 )

=
 1 
 8 

( 50 − 2 × 16 − 10 )

= 1  simple 4-cycle

[ 3 marks ]
( ii )

   = ( )  
2

= ( )A

0 1 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0
1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 0 1 0

A

3 0 2 0 2 0 2 0 1 0 1
0 4 0 2 0 2 0 2 0 2 0
2 0 3 0 1 0 1 0 2 0 2
0 2 0 4 0 2 0 2 0 2 0
2 0 1 0 3 0 2 0 2 0 1
0 2 0 2 0 3 0 2 0 0 0
2 0 1 0 2 0 3 0 1 0 2
0 2 0 2 0 2 0 4 0 2 0
1 0 2 0 2 0 1 0 3 0 2
0 2 0 2 0 0 0 2 0 3 0
1 0 2 0 1 0 2 0 2 0 3

  2 ∑
n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) “ twice the sum of  the tr iangularised degrees”

   = 2 ( 6 + 12 + 6 + 12 + 6 + 6 + 6 + 12 + 6 + 6 + 6   

= 2 × 84

= 168



Martin Hansen : 53

tr ( 2) =  36  “ the sum of  all  degrees”      A

 
3

= ( )  A

0 8 0 8 0 7 0 6 0 4 0
8 0 8 0 6 0 8 0 6 0 8
0 8 0 8 0 4 0 6 0 7 0
8 0 8 0 8 0 6 0 8 0 6
0 6 0 8 0 7 0 8 0 4 0
7 0 4 0 7 0 7 0 4 0 4
0 8 0 6 0 7 0 8 0 4 0
6 0 6 0 8 0 8 0 8 0 8
0 6 0 8 0 4 0 8 0 7 0
4 0 7 0 4 0 4 0 7 0 7
0 8 0 6 0 4 0 8 0 7 0

4
= ( )A

23 0 20 0 21 0 21 0 18 0 18
0 32 0 28 0 22 0 28 0 22 0
20 0 23 0 18 0 18 0 21 0 21
0 28 0 32 0 22 0 28 0 22 0
21 0 18 0 23 0 21 0 20 0 18
0 22 0 22 0 21 0 22 0 12 0
21 0 18 0 21 0 23 0 18 0 20
0 28 0 28 0 22 0 32 0 22 0
18 0 21 0 20 0 18 0 23 0 21
0 22 0 22 0 12 0 22 0 21 0
18 0 21 0 18 0 20 0 21 0 23


By Algorithm 2.1, the number of simple 4-cycles is given by,

 
 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) − tr ( 2))A A

=
 1 
 8 

( 276 − 168 − 36 )           

= 9  simple 4-cycles


From an inspection of the graph it can be seen that this is correct.


2 1

3 4

5

67

8

910

11

[ 4 marks ]
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Answer 9

  (K4) = ( )  
2 (K4) = ( )( i ) A

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

A

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

    
3 (K4) = ( )  

4 (K4) = ( )A

6 7 7 7
7 6 7 7
7 7 6 7
7 7 7 6

A

21 20 20 20
20 21 20 20
20 20 21 20
20 20 20 21

By Algorithm 2.1, the number of simple 4-cycles is given by,

 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) − tr ( 2))A A

=
 1 
 8 

( 84 − 2 × 24 − 12 )    

= 3 simple 4-cycles


[ 2 marks ]

(K7) = ( )    
2 (K7) = ( )( ii ) A

0
0

0
1

0
0

1 0
0

A

6
6 5

6
6

6
5 6

6

3 (K7) = ( )   4 (K7) = ( )A

30
30 31

30
30

30
31 30

30

A

186
186 185

186
186

186
185 186

186

By Algorithm 2.1, the number of simple 4-cycles is given by,

 
 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) − tr ( 2))A A

=
 1 
 8 

(1302 − 2 × 210 − 42)    

= 105 simple 4-cycles

[ 3 marks ]
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( iii ) This is about generalising parts (i) and (ii)


(Kn) = ( )    
2 (Kn) = ( )A

0
...

...
1

...
...

1 ...
0

A

...
...

...
...

...

3 (Kn) = ( )   A

...
...

...
...

...

n − 1

n − 1

n−2

n−2

(n −1) (n −2)

(n −1) (n −2)

4 (Kn) = (A

+(n+1) (n−2)2

+(n+1) (n−2)2

)   

...
...

...
...

...

(n−1)2+ (n−1) (n−2)2

(n−1)2+ (n−1) (n−2)2
2(n−1)(n−2)+(n−2)3

2(n−1)(n−2)+(n−2)3

By Algorithm 2.1, the number of simple 4-cycles is given by,

    
 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) − tr ( 2))A A

   =
 1 
 8 

( n (n − 1)2 + n (n − 1) (n − 2)2 − 2 (n − 1) (n − 2) n − n (n − 1))

=
 n ( n − 1 )  

 8 
( ( n − 1 ) + ( n − 2 )2 − 2 ( n − 2 ) − 1 )

=
 n ( n − 1 )  

 8 
( n − 1 + n2 − 4n + 4 − 2n + 4 − 1 )

=
 n ( n − 1 )  

 8 
( n2 − 5n + 6 )

=
 n ( n − 1 ) ( n − 2 ) ( n − 3 )  

 8 

=
 n!  

 8 ( n − 4 )!  
 simple 4-cycles

There is a well known result that the number of simple m-cycles in Kn

     
 n! ( k − 1 )!

2 k! ( n − k )!  
 is given by which for k = 4 matches our result.

[ 5 marks ]
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Answer 10

 
2

= ( )  
3

= ( )A

3 0 1 1 0 0 1 1 1 1
0 3 0 1 1 1 0 1 1 1
1 0 3 0 1 1 1 0 1 1
1 1 0 3 0 1 1 1 0 1
0 1 1 0 3 1 1 1 1 0
0 1 1 1 1 3 1 0 0 1
1 0 1 1 1 1 3 1 0 0
1 1 0 1 1 0 1 3 1 0
1 1 1 0 1 0 0 1 3 1
1 1 1 1 0 1 0 0 1 3

A

0 5 2 2 5 5 2 2 2 2
5 0 5 2 2 2 5 2 2 2
2 5 0 5 2 2 2 5 2 2
2 2 5 0 5 2 2 2 5 2
5 2 2 5 0 2 2 2 2 5
5 2 2 2 2 0 2 5 5 2
2 5 2 2 2 2 0 2 5 5
2 2 5 2 2 5 2 0 2 5
2 2 2 5 2 5 5 2 0 2
2 2 2 2 5 2 5 5 2 0



4
= ( )A

15 4 9 9 4 4 9 9 9 9
4 15 4 9 9 9 4 9 9 9
9 4 15 4 9 9 9 4 9 9
9 9 4 15 4 9 9 9 4 9
4 9 9 4 15 9 9 9 9 4
4 9 9 9 9 15 9 4 4 9
9 4 9 9 9 9 15 9 4 4
9 9 4 9 9 4 9 15 9 4
9 9 9 4 9 4 4 9 15 9
9 9 9 9 4 9 4 4 9 15



5
= ( )A

12 33 22 22 33 33 22 22 22 22
33 12 33 22 22 22 33 22 22 22
22 33 12 33 22 22 22 33 22 22
22 22 33 12 33 22 22 22 33 22
33 22 22 33 12 22 22 22 22 33
33 22 22 22 22 12 22 33 33 22
22 33 22 22 22 22 12 22 33 33
22 22 33 22 22 33 22 12 22 33
22 22 22 33 22 33 33 22 12 22
22 22 22 22 33 22 33 33 22 12

By Algorithm 2.2, the number of simple 5-cycles is given by,

 1 
 10 ( tr ( 5) − 5 ∑

n

i = 1

(( a(3)
ii  ) (a(2)

ii − 2)) − 5 tr ( 3))A A

=
 1 
 10 

( 120 − 0 − 0 )      

= 12 simple 5-cycles

[ 5 marks ]
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Answer 11
( i ) Each graph has 12 vertices. The “number of vertices” property has not

detected any non-isomorphisms.
[ 1 mark ]

( ii ) Each graph has 18 edges. The “number of edges” property has not
detected any non-isomorphisms.

[ 2 marks ]
( iii ) Each graph is 3-regular so the degree sequence of each is simply 

. The “degree sequence”( 3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3 )
property has not detected any non-isomorphisms.

[ 2 marks ]
( iv )

= ( )R

0 1 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0 0 1 0 0

= ( )B

0 1 0 0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0 0 0 1 0

= ( )G

0 1 0 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 1 0 0 0

[ 3 marks ]
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( v )

3 ( )R =

0 5 1 6 2 0 6 1 1 2 2 1
5 0 2 1 1 5 1 2 2 1 5 2
1 2 0 5 5 1 2 1 5 1 2 2
6 1 5 0 0 2 1 6 2 2 1 1
2 1 5 0 2 5 1 1 1 2 2 5
0 5 1 2 5 2 1 1 2 2 1 5
6 1 2 1 1 1 0 6 5 1 2 1
1 2 1 6 1 1 6 0 2 1 5 1
1 2 5 2 1 2 5 2 0 5 1 1
2 1 1 2 2 2 1 1 5 0 5 5
2 5 2 1 2 1 2 5 1 5 0 1
1 2 2 1 5 5 1 1 1 5 1 2

tr ( 3) = 6 ⇔ 1 R triangle

3 ( )B  =

2 5 0 1 1 2 5 5 1 2 2 1
5 0 5 1 3 1 2 1 3 0 1 5
0 5 0 6 0 3 1 2 1 6 2 1
1 1 6 0 6 1 1 1 2 1 5 2
1 3 0 6 0 5 0 2 1 6 1 2
2 1 3 1 5 0 5 1 3 0 1 5
5 2 1 1 0 5 2 5 1 2 2 1
5 1 2 1 2 1 5 2 5 0 0 3
1 3 1 2 1 3 1 5 0 5 5 0
2 0 6 1 6 0 2 0 5 0 2 3
2 1 2 5 2 1 2 0 5 2 0 5
1 5 1 2 1 5 1 3 0 3 5 0

tr ( 3) = 6 ⇔ 1 B triangle

3 ( )G  =

0 5 1 1 5 2 5 1 3 0 3 1
5 0 6 3 1 1 0 2 0 6 1 2
1 6 2 5 2 1 1 0 2 1 6 0
1 3 5 2 5 0 1 1 1 2 5 1
5 1 2 5 0 5 2 1 2 2 1 1
2 1 1 0 5 0 1 7 0 2 1 7
5 0 1 1 2 1 0 7 0 3 0 7
1 2 0 1 1 7 7 0 7 0 1 0
3 0 2 1 2 0 0 7 0 5 0 7
0 6 1 2 2 2 3 0 5 0 6 0
3 1 6 5 1 1 0 1 0 6 2 1
1 2 0 1 1 7 7 0 7 0 1 0

tr ( 3) = 6 ⇔ 1 G triangle

The “triangle count” property has not detected any non-isomorphisms.

[ 3 marks ]
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( vi )
The characteristic equations are:
For R:

  ( x + 2 ) ( x4 + x3 − 4 x2 − x + 2 ) ( x5 − 7 x3 + x2 + 11x − 4 )

For B:

  (x − 3) (x + 1) ( x2 − 2 ) ( x3 + x2 − 2x − 1 ) ( x5 + x4 − 8 x3 − 3 x2 + 16x − 6 )

For G:

  (x − 3)  x2 ( x9 + 3 x8 − 9 x7 − 29 x6 + 22 x5 + 82 x4 − 17 x3 − 77 x2 + 3x + 13 )

These show that none of the graphs are isomorphic to any of the others.

This document has been prepared for the School of Computing and Engineering at Derby University, England
It may be freely duplicated and distributed, unaltered, for non-profit educational use

© 2023 Number Wonder
Unrestricted access to the exercise solutions is provided in return for notifying typographical and other errors to mhh@shrewsbury.org.uk



60 : Graph Theory I

Lecture 3
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

3.1  Subgraphs and Induced Subgraphs
The first two lectures focussed on the properties of a graph as an indivisible
entity. Now the thinking shifts to pondering the patterns within a graph. We start
with the idea of a subgraph.



Definition : Subgraph (Version 1)
A subgraph,G′, of a graphG is a graph all of whose vertices are vertices ofG
and all of whose edges are edges of G.


For a given number of vertices,n, the number of possible unlabelled graphs,

 increases rapidly with increasing n as the next table shows,GUL,


n 0 1 2 3 4 5 6 7 8 9 10 ...

n(GUL) 1 1 2 4 11 34 156 1044 12346 274668 12005168 ...

          This is sequence A000088 in OEIS


On top of this, even for a graphG with a small number of vertices, the number of
non-isomorphic subgraphs is large. 



Definition : Subgraph (Version 2)
A subgraph,G′, can also defined as being a graph that is obtained fromG by a
sequence of edge and vertex deletions. When an edge is deleted it is simply
removed but when a vertex is deleted also removed are all edges incident to it.



Definition : Induced Subgraph
A graphG′ is said to be a (vertex) induced subgraph ofG if G′ can be obtained
from G by a sequence of vertex-deletions only. That is, no edge-deletions are
allowed other than those that occur as a part of a vertex-deletion.

3.2  Example of a (Vertex) Induced Subgraph
To the left is shown a graph along with its adjacency matrix. The vertex labelled
4 is about to be deleted along with any attached edge(s). This corresponds to
deleting row 4 and column 4 in the adjacency matrix, The induced subgraph is
on the right. The set of vertices {1, 2, 3 } are termed the inducing vertices.


1

2

3 4

1

2

3

( )0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

( )0 1 0
1 0 1
0 1 0

⇒
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3.3  Preserving Adjacency
As illustrated by the example, an induced subgraph keeps both adjacency and
non-adjacency of the inducing vertices. In contrast, an ordinary subgraph
preserves only non-adjacency.


The example looked at the graph G15 and one of its induced subgraphs. G15 is
small enough for all of its subgraphs to be depicted and these are presented in the
next diagram. Of the 16 possible subgraphs, 8 of them are (vertex) induced, and
these are highlighted with a blue background.


G1 G2 G3

G4 G5 G6 G7

G8 G9 G10 G11

G12 G13 G14 G15

G0

The 16 non-isomorphic subgraphs of G15, with the 8 that are induced in blue

3.4  The Null Graph
In the diagram the “null graph”, G0, is given as a subgraph although there is
some debate amongst mathematicians on whether this empty graph is a valid
entity or not. Many feel that it causes so much trouble and unnecessary issues
that it is better to exclude it from Graph Theory altogether. Pragmatically,
whether to include it as a valid and useful graph depends on context and
convenience. In any theorem that involves the counting of graphs, check if the
null graph is included.
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3.5  Clique and Maximal Clique
In a social group a collection of people who all know each other is referred to as
a clique. This situation has an analogy in Graph Theory where the social group is
the graph, and a clique is an induced subgraph that is complete. 



Amy

Bob

Cindy Flo

Dede Ed


The illustration shows who is friends with who in a class of six schoolchildren.
Amy, Bob and Cindy form a clique because each is friends with the other two.
Cindy, Dede, Ed and Flo do not form a clique because Ed and Cindy are not
friends, for example. Although Amy, Bob and Cindy form a clique, their clique
is not maximal because Flo can be added into the friendship group and each
possible pairing amongst the four is a friendship relation. The clique of Amy,
Bob, Cindy and Flo is now maximal because no further child can be added to the
four that would result in a larger clique. Notice that Dede and Ed, for example,
also form a maximal clique as each member of that clique knows all the others,
and no other child can be added that would result in a larger clique.


The following diagram illustrates the fact that any vertex induced subgraph of a
complete graph forms a clique.



K5 K4 K3 K2 K1

⇒ ⇒ ⇒ ⇒

 ( ) ⇒ ( ) ⇒ ( ) ⇒ ( ) ⇒ (0)

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1
1 0 1
1 1 0

0 1
1 0
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3.6  Some Other Pieces of Graph
Having dealt briefly with the subgraphs of a graph, we return to this lecture's
main theme which was “patterns within a graph”. A crucial next step is to
identify three entities known as path, trail and walk.



Definition : Path (of Distinct Vertices)
A path onn distinct vertices in a graphG is denoted, . Discussed in section
1.3, a path will have two end vertices of degree at least 1 and thread its way
through each of the remaining  vertices which will each be of degree at
least 2. To emphasise; a path with at least one edge cannot be closed, that is, the
first and last vertex cannot be the same vertex.

Pn

(n − 2)



A path, P7, (in red) on 7 vertices in graph G1169


Definition : Trail (of Distinct Edges)
A trail in a graphG is a (possibly empty) sequence of distinct edges inG such
that any two consecutive edges in the sequence are incident to a common vertex.
A trail allows repetitions of the same vertex whereas a path does not. If a non
empty trail has only the first and last vertices equal it is termed acycle or closed
trail. If, in addition to having the same first and last vertex, it has other vertices
occurring more than once it is termed a circuit.



Definition : Walk
A walk on a graphG drops the requirement that the edges in the sequence of
edges be distinct. Aclosed walk is a walk where the start and the finish are the
same vertex.
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3.7 The Eularian Edge Traveller
Given a connected graph, we can unleash upon it the Eularian Edge Traveller.
This can be thought of as a spider that attempts to find a way to crawl along a
closed trail that traverses each and every edge in the graph once and once only,
starting and finishing at the same vertex. If such a closed trail can be found the
graph is said to be Eularian and the trail said to be a Eulerian trail.
For example, the graph below left (with red vertices) is Eularian and by way of
demonstrating this a Eularian trail is shown in the central diagram (with blue
vertices) threading its way through each edge once and once only.
Note that in this particular example there are other valid closed trails (even from
the same start/finish vertex) that could have been used show that the graph is
Eularian.

Start and Finish Start and Finish

3.8  The Hamiltonian Vertex Visitor
Given a connected graph, we can unleash upon it the Hamiltonian Vertex
Visitor. This can again be thought of as a spider. This time, however, it attempts
to find a way to crawl in a cycle  that passes through every vertex in the graph
once and once only. If such a cycle can be found the graph is said to be
Hamiltonian and the cycle is said to be a Hamiltonian cycle.
For example, the graph above left (with red vertices) is Hamiltonian. The third
diagram in the illustration (with green vertices) shows this by exhibiting a closed
trail that visits each vertex exactly once.
Note that in this particular example there are other valid cycles that could have
been used to show that the graph is Hamiltonian.
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3.9  Proofs
In this final section, we work our way through a sequence of “classic”
elementary graph theory proofs to do with the connectivity of graphs.



Lemma 3.1 : On the Degree of the Vertices of an Eulerian Graph
If G is an Eulerian graph, then each vertex of G has even degree.

Proof
If G is Eulerian, then there is an Eulerian trail, that is, a closed trail that traverses
each and every edge in the graph once and once only. Whenever this trail passes
through a vertex there is a contribution of +2 to the degree of that vertex. Since
each edge is used just once, the degree of each vertex is a sum of 2s. But that is
precisely what an even number is. Thus, each vertex is of even degree.             ̧

Lemma 3.2 :  Eulerian Graph Decomposition
A graph that is Eulerian (and therefore connected) can be decomposed into
distinct cycles, no two of which have an edge in common.

Proof
The first cycle is obtained by starting at any vertexa and traversing edges in an
arbitrary manner, never repeating any edge. As the graph is Eulerian, each vertex
is of even degree, by Lemma 3.1, which guarantees that whenever a vertex is
entered, there is a way out. With only a finite number of vertices inG, eventually
a vertex b is reached that has been previously encountered.



a

b C1


The edges of the closed trail between the two occurrences of the vertexb form a
cycle,C1 which is now removed fromG, leaving a (possibly disconnected) graph
H in which each vertex has even degree. IfG is simplyC1 then we are done. If
not then the procedure is repeated to find inH a cycleC2 (which will not have
any edges in common with C1).



a

b C1
C2
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Removing the edges ofC2 from H leaves yet another graph in which each vertex
has even degree, and which therefore contains a cycle C3.



a

b
C1 C2

C3


By continuing in this manner there will eventually be no edges left but, along the
way, a set of distinct cyclesC1, C2, C3, ..., have been obtained that include
every edge of G, and no two of which have an edge in common.              ̧

Ck 

In Lemma 3.2 we began with the fact that a graph was Eularian to reason that
each vertex was of even degree (by Lemma 3.1) and then deduced that the graph
could be decomposed into distinct cycles. However, if we drop the initial
requirement that the graph be Eularian, the argument employed in proving
Lemma 3.2 will still apply from the starting point of having a graph with vertices
all of even degree. Such a graph can still be decomposed into distinct cycles.
Must it then be Eularian ? Our next lemma, Lemma 3.3, states that it is.

Lemma 3.3 : Graphs With Vertices All Even
If each vertex of a connected graph G has even degree, then G is Eulerian.

Proof
As just discussed, a connected graph in which each vertex is of even degree can
be decomposed into distinct cycles. To now show this graph is Eularian the
cycles or, rather, parts of the cycles, must be fitted together in some way to make
an Eularian trail. Here is an algorithm that will do this; start at any vertex of the
cycle C1 and travel roundC1 until the vertex of another cycle is encountered
such as, for example,C2. Now pass along the edges of this cycle before resuming
the journey aroundC1, traversing other new cycles as they are encountered. At
this juncture a closed trail that includesC1 and (unlessG is justC1) at least one
other cycle (sinceG is connected) has been traversed. If this trail includes all of
the cyclesC1, C2, C3, ..., then that is the required Eularian trail. If not, a
journey is commenced round the new closed trail, traversing other cycles as they
are met. There will always be at least one cycle to add to the previous closed trail
becauseG is connected. The process is repeated in this manner until all the
cycles have been traversed, whereupon the sought after Eularian trail is obtained.
From this is deduced that G is Eularian.              ̧

Ck 

Theorem 3.1 : Eularian IFF
A connected graph is Eularian if and only if each vertex has even degree.

Proof
Lemma 3.1 and Lemma 3.2 in combination prove this theorem.              ̧
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Lemma 3.4 : is HamiltonianKn 
The complete graph,  is Hamiltonian for all values of n. Kn,

Proof
The complete graph  for any given value of n can be drawn with one vertex atKn

each vertex of an n-gon as illustrated by the following diagram,


...

...

...

...

...

...

...

...

...

The perimeter of the diagram, highlighted in red, is the cycle subgraph of  Cn  Kn

which is a cycle that includes every vertex. 
This shows that contains a Hamiltonian cycle for all values ofn and so, by
definition, is Hamiltonian.              ̧

Kn 



Theorem 3.2 A Test For Hamiltonianism (Ore, 1960)

    deg(v) + deg(w) ≥ n If G is a simple graph with n (≥ 3) vertices, and if   for

each pair of non-adjacent vertices v and w, then G is Hamiltonian.

Proof (by contradiction)
Suppose, for a contradiction, thatG is a simple graph withn (≥ 3) vertices, and
with deg(v) + deg(w) ≥ n for each pair of non-adjacent verticesv andw but that
G is not Hamiltonian. Pick any two vertices ofG which are not already joined
by an edge and add a new edge between them. Keep on doing this until a graph

is obtained which, for the first time, does have a closed Hamiltonian path.
(This event must eventually occur because the complete graph onn vertices acts
as a “catching feature” because, by Lemma 3.4, the graph is Hamiltonian).

GLast 

Kn 
Let  be the graph immediately prior to , let {x, y} be the edge added
to to obtain  and let (  be a Hamiltonian cycle in

. This must use the edge {x, y} somewhere in the cycle because otherwise
would have had a cycle (which would contradict the earlier requirement

that it did not). 

GButOne GLast
GButOne GLast z1, z2, ..., zn, z1)

GLast
GButOne 

There are now two cases to consider;
Case 1 :
If {  = {x, y} then (  is a non-closed Hamiltonian path in

. Relabel the path's vertices (  such that x = v1 and 
zn, z1} z1, z2, ..., zn)

GButOne v1, v2, ..., vn) y = vn.



68 : Graph Theory I

Case 2 :
If { ≠ {x, y} then there must  be  somer  such  that  1≤ r < n and {x, y} =
{ } and (  is a non-closed Hamiltonian path in

. Relabel the path's vertices (  such that x = v1 and 

zn, z1}
zr, zr + 1 zr + 1, ..., zn, z1, ..., zr)

GButOne v1, v2, ..., vn) y = vn.


In both cases we emerge with a non-closed Hamiltonian path that is labelled
 with x = v1 and as illustrated below.(v1, v2, ..., vn) y = vn 


x v1 = y vn = 

vn − 1

......

vk − 1

vk + 1vk − 2

vk

v2

The focus now is upon the condition .deg(v) + deg(w) ≥ n
The key observation is to note that for any vertex in the path thatx is adjacent to,
(say where 2≤ k ≤ n), y cannot be adjacent to the preceding vertex in the path
(say where 2≤ k ≤ n ) because the edge {x, y} was specifically removed
when constructing GButOne from GLast.

vk 
vk − 1 

Suppose for the sake of argument thaty was adjacent to the preceding vertex as
shown with a broken line. This cannot be the case because if it were then we
would have the following Hamiltonian cycle, 

x, v2, ..., vk − 2, vk − 1, y, vn − 1, ..., vk + 1, vk, x

Notice that this is only an issue ify is adjacent to the preceding vertex; for any
other vertex a Hamiltonian cycle does not result.

     deg(y) ≤ n − 1 − deg(x)     deg(x) + deg(y) ≤ n − 1Consequently,  giving 

which contradicts the earlier condition that   for each
pair of non-adjacent vertices v and w.             ̧

deg(v) + deg(w) ≥ n

The following teaching video from “Wrath of Math” goes through a proof of
Ore's theorem along similar lines to that presented above;

Teaching Video: http://www.NumberWonder.co.uk/v9119/3.mp4

http://www.NumberWonder.co.uk/v9119/3.mp4
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3.10  Exercise
Marks Available : 60

Question 1
In section 1.3 acycle graph was defined as being a graph that consists of a single
cycle of vertices and edges and denoted  The example of C5 was given as;Cn.




Charles claims that, “If every vertex of a simple graphG has degree 2, thenG is
a cycle”. Exhibit a counterexample on six vertices that proves Charles is wrong.

[ 2 marks ]

Question 2
( i ) By first quoting a lemma or theorem, explain why G184 is not Eulerian.



n = 6,    m = 10

(2,  3,  3,  4,  4,  4)

G184

[ 1 mark ]

( ii ) Although not Eulerian, the graph is semi-Eulerian.
This means that there exists a (non-closed) trail that includes every
edge. Annotate the graph with such a trail.

[ 2 marks ]
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Question 3
Give an example of a connected graph on five vertices that is non-Eulerian (neither
Eularian nor semi-Eularian) that contains a cycle.

[ 2 marks ]

Question 4
Prove the following lemma;



Lemma 3.5 : Must Contain A Cycle
Any finite, connected graph, with more than two vertices, in which every vertex
is of degree of at least 2, must contain a cycle.

[ 4 marks ]
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Question 5
In each of the following four graphs, a part of the graph is highlighted in red.
Describe each of the highlighted configurations with one of the following;

( a ) “maximal clique”
( b ) “non-maximal clique”
( c ) “not a clique”

[ 4 marks ]

Question 6
The graph depicted below is of the complete graph, K5.
It contains a trail that traverses each edge once and once only, with all vertices
being encountered more than once.
Such a trail is, for example, 1, 2, 3, 4, 5, 1, 3, 5, 2, 4, 1
This is an example of an Euler circuit.



1

2
3 4

5


Explain why does not contain an Euler circuit when n is even.Kn  

[ 3 marks ]

Question 7
Give an example on four vertices of a connected graph that has no Hamilton
path.

[ 2 marks ]
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Question 8
For each of these connected graphs state if they have a Hamiltonian path or not.



[ 3 marks ]

Question 9
Show how Ore's Theorem correctly predicts that the following graph is
Hamiltonian, and then annotate the graph to show such a cycle.

n = 5,    m = 7

(2,  3,  3,  3,  3  )

G48 - Labelled

1

2
3

45

[ 3 marks ]

Question 10
Show that the cycle graph, C5, is Hamiltonian in spite of Ore's Theorem not
being satisfied.

[ 3 marks ]
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Question 11
Explain why the following graph is not Hamiltonian.



n = 7,    m = 9

(2,  2,  3,  3,   )

G573

5

2, 3,  3  

[ 3 marks ]

Question 12
A “Uniquely Hamiltonian Graph” is a graph possessing a single Hamiltonian cycle.
Determine which, if any, of the following are Uniquely Hamiltonian Graphs.
In each case, give a reason for your answer.



[ 3 marks ]
Question 13
Determine if each of the following graphs is
( i ) Eulerian
( ii ) Hamiltonian



[ 3 marks ]
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Question 14
Determine if the following graph is,
( i ) Eulerian
( ii ) Hamiltonian
Give a reason for each of your answers.



[ 4 marks ]
Question 15
The graph represents friendships between  a group of students where each vertex
is a student and each edge is a friendship. Is it possible for the students to sit
around a round table in such a way that every student sits between two friends ?
(With thanks to Oscar Levin for this question)



[ 4 marks ]
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Question 16
Prove the following corollary to Ore's Theorem,

Corollary 3.1 : Dirac's Theorem

   deg(v) ≥
 n 
 2 

If G is a simple connected graph with n vertices, where n ≥ 3, and

for each vertex v, then G is Hamiltonian.

Hint : Use Ore's Theorem !

[ 4 marks ]

Question 17

Consider the following pentomino,  

( i ) Draw a graph G of this pentomino with five vertices and 4 edges.

[ 1 mark ]
( ii ) Draw a distinct pentomino whose graph is isomorphic to G.

[ 1 mark ]
( iii ) Draw two distinct pentominos whose graphs are not isomorphic to

G, not isomorphic to each other, and not isomorphic to the path, P5

[ 3 marks ]
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Question 18
In answering question 3, you will have found that the vertices of odd degree
played a key role; one being the start of the (non-closed) trail and the other the
finish. With that in mind the following lemma will not come as a surprise.



Lemma 3.6 : Semi-Eularian IFF
A connected graph is semi-Eulerian if and only if it has exactly two vertices of
odd degree.


 Prove lemma 3.4.

[ 5 marks ]
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3.11  Answers to 3.10 Exercise
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

Answer 1
Charles forgot to state that the graph must be connected for his statement to be true.
The counterexample to his statement without the word connected is;



[ 2 marks ]

Answer 2
( i ) The degree sequence of G184, given in the diagram, is (2, 3, 3, 4, 4, 4).

By Theorem 3.4, “a connected graph is Eularian if and only if each vertex
has even degree” and so the odd numbers in the degree sequence mean
G184 is not Eularian.

[ 1 mark ]
( ii ) The trail will have to start at one of the vertices of odd degree and finish

at the other vertex of odd degree, and pass along each and every edge once.
One such is depicted below but there are others.



n = 6,    m = 10

(2,  3,  3,  4,  4,  4)

G184

[ 2 marks ]

Answer 3

[ 2 marks ]
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Answer 4


Lemma 3.5 : Must Contain A Cycle
Any finite, connected graph, with more than two vertices, in which every vertex
is of degree of at least 2, must contain a cycle.


Proof (from “Introduction to Graph Theory by Robin J Wilson”)
We begin by assuming that the graph, G, is simple.
(If it were not, with loops or multiple edges, the result is trivial)
Let v be any vertex ofG and construct a walk inductively, by
choosingv1 to be any vertex adjacent tov and, for eachk > 1, choosing to
be any vertex adjacent to except  the existence of such a vertex
guaranteed by the hypothesis. SinceG has only finitely many vertices,
eventually a vertex will be chosen that has been chosen before. Letbe the first
such vertex in which case the part of the walk that lies between the two
occurrences of is the required cycle.             ̧

v, v1, v2, ... 
vk + 1 

vk  vk − 1,

vc 

vc 
[ 4 marks ]

Answer 5

maximal clique non-maximal cliquenot a clique maximal clique

[ 4 marks ]
Answer 6
Theorem 3.1 points out that “A connected graph is Eularian if and only if each
vertex has even degree”. To have a Eularian Circuit the graph has to first be
Eularian. Whenn is even, is -regular, and so all vertices are of odd
degree. Thus there can be no Eularian Circuit when n is even.

Kn ( n − 1 )

[ 3 marks ]
Answer 7

[ 2 marks ]
Answer 8

Yes No Yes No No

[ 3 marks ]
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Answer 9
The non-adjacent vertices with their degree sum are,



n = 5,    m = 7

(2,  3,  3,  3,  3  )

G48 - Labelled

1

2
3

45

1 3 : 3 + 2 = 5

24 : 3 + 3 = 6

35 : 2 + 3 = 5


Ore's Theorem requires that all the degree sums are at least 5 which is so.
Thus G48 is Hamiltonian.
The annotation shows one of the two possible Hamiltonian cycles.

[ 3 marks ]

Answer 10
With the C5 graph labelled as shown, the non-adjacent vertices with their
degree sum are,

n = 5,    m = 5

G38 - Labelled

( 2,  2,  2,  2,  2  )

1
2

3

4 5

1 3 : 2 + 2 = 4

1 4 : 2 + 2 = 4

24 : 2 + 2 = 4

25 : 2 + 2 = 4

35 : 2 + 2 = 4

Ore's theorem is not satisfied because it requires that all of the degree sums
must be at least 5 (the number of vertices) which is not so (none of them are).
In spite of this the graph is obviously Hamiltonian.
We say that Ore's Theorem is a sufficient condition but not a necessary one.

[ 3 marks ]



80 : Graph Theory I

Answer 11
Any vertex of degree two has to be on the Hamiltonian cycle and the edges incident
to such a vertex must be traversed. The vertices of degree two and their incident
edges are coloured blue in the following annotation of G573,



n = 7,    m = 9

(2,  3,  3,  3,  3  )

G573

5

2,


All three edges that are incident to the centre vertex thus would have to be on any
Hamiltonian cycle which means that such a cycle cannot exist.

[ 3 marks ]

Answer 12

The leftmost graph is Hamiltonian but not unique as there are two distinct
Hamiltonian cycles that can be drawn, each missing out a different edge.
The central graph is uniquely Hamiltonian, the cycle missing out the vertical edge.
The rightmost graph is not Hamiltonian at all and so not uniquely Hamiltonian.

[ 3 marks ]

Answer 13

The leftmost graph is neither Eularian nor Hamiltonian.
The central graph is Eularian but not Hamiltonian.
The rightmost graph is not Eularian but it is (uniquely) Hamiltonian.

[ 3 marks ]
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Answer 14
( i ) By Theorem 3.1, “A connected graph is Eularian if and only if each

vertex has even degree”. Many of the vertices in the graph are of odd
degree and so it is not Eulerian.

( ii ) Any vertex of degree two has to be on the Hamiltonian cycle and the
edges incident to such a vertex must be traversed. The vertices of degree
two and their incident edges are coloured blue in the following annotation
the given graph,



Of these it is the lowest vertex that is problematical, and results in the edge
highlighted in red being excluded from any Hamiltonian cycle. This in turn
means that the two side edges must be in the cycle. However, we that have
the six cycle highlighted in green below as having to be a part of the
Hamiltonian path.

However, on looking at the way this six cycle joins to the rest of the graph 
it becomes clear that it cannot be a part of a Hamiltonian cycle. Thus the
graph is not Hamiltonian.

[ 4 marks ]
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Answer 15
The graph needs searching to see if it has a Hamiltonian cycle.
It does !

[ 4 marks ]

Answer 16

Corollary 3.1 : Dirac's Theorem

   deg(v) ≥
 n 
 2 

If G is a simple connected graph with n vertices, where n ≥ 3, and

for each vertex v, then G is Hamiltonian.

Proof
Suppose that we have a graph that satisfies the conditions of the theorem and
which is not complete, for if it were, it would be Hamiltonian and we'd be done.
Take two non-adjacent vertices,u andv, from the graphG that are not joined by
an edge. Consider the sum of the degrees of these vertices, deg(u) + deg(v) .

  deg(u) ≥
 n 
 2 

    deg(v) ≥
 n 
 2 

 .From the theorem's conditions we know that and

  deg(u) + deg(v) ≥
 n 
 2 

+
 n 
 2 

   deg(u) + deg(v) ≥ n .Then and we have that,

Ore's Theorem, G is Hamiltonian. ¸From 

[ 4 marks ]
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Answer 17
( i ) Anything isomorphic to,



[ 1 mark ]
( ii ) Either one of the following two pentominos,



[ 1 mark ]
( iii )

[ 3 marks ]
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Answer 18


Lemma 3.6 : Semi-Eularian IFF
A connected graph is semi-Eulerian if and only if it has exactly two vertices of
odd degree.


Proof
(⇒)
If G is semi-Eulerian then there is an open Euler trail,T, in G. Suppose the trail
begins atv1 and end at  Except for the initial occurrence ofv1 and the
concluding occurrence of  each time a vertex is encountered, it accounts for
two edges adjacent to that vertex, the one before it in the trail and the one after.
T uses every edge exactly once. So every edge is accounted for without
repetition. In conclusion, the degree of every vertex must be even except forv1

and which must both be odd.

vn.
vn,

vn 
(⇐)
Supposeu andv are the two vertices of odd degree. Consider the related graph
G′ where a single edge has been added toG betweenu andv. Every vertex inG′
is of even degree and so by Theorem 3.1, “A connected graph is Eularian if and
only if each vertex has even degree”,G′ has a closed Euler trail. This closed trail
must use the edge betweenu andv. Thus there must be an open Euler trail inG
when the edge between u and v is removed.

            ̧
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