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Lecture 3
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

3.1  Subgraphs and Induced Subgraphs
The first two lectures focussed on the properties of a graph as an indivisible
entity. Now the thinking shifts to pondering the patterns within a graph. We start
with the idea of a subgraph.



Definition : Subgraph (Version 1)
A subgraph,G′, of a graphG is a graph all of whose vertices are vertices ofG
and all of whose edges are edges of G.


For a given number of vertices,n, the number of possible unlabelled graphs,

 increases rapidly with increasing n as the next table shows,GUL,


n 0 1 2 3 4 5 6 7 8 9 10 ...

n(GUL) 1 1 2 4 11 34 156 1044 12346 274668 12005168 ...

          This is sequence A000088 in OEIS


On top of this, even for a graphG with a small number of vertices, the number of
non-isomorphic subgraphs is large. 



Definition : Subgraph (Version 2)
A subgraph,G′, can also defined as being a graph that is obtained fromG by a
sequence of edge and vertex deletions. When an edge is deleted it is simply
removed but when a vertex is deleted also removed are all edges incident to it.



Definition : Induced Subgraph
A graphG′ is said to be a (vertex) induced subgraph ofG if G′ can be obtained
from G by a sequence of vertex-deletions only. That is, no edge-deletions are
allowed other than those that occur as a part of a vertex-deletion.

3.2  Example of a (Vertex) Induced Subgraph
To the left is shown a graph along with its adjacency matrix. The vertex labelled
4 is about to be deleted along with any attached edge(s). This corresponds to
deleting row 4 and column 4 in the adjacency matrix, The induced subgraph is
on the right. The set of vertices {1, 2, 3 } are termed the inducing vertices.


1

2

3 4

1

2

3

( )0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

( )0 1 0
1 0 1
0 1 0

⇒
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3.3  Preserving Adjacency
As illustrated by the example, an induced subgraph keeps both adjacency and
non-adjacency of the inducing vertices. In contrast, an ordinary subgraph
preserves only non-adjacency.


The example looked at the graph G15 and one of its induced subgraphs. G15 is
small enough for all of its subgraphs to be depicted and these are presented in the
next diagram. Of the 16 possible subgraphs, 8 of them are (vertex) induced, and
these are highlighted with a blue background.


G1 G2 G3

G4 G5 G6 G7

G8 G9 G10 G11

G12 G13 G14 G15

G0

The 16 non-isomorphic subgraphs of G15, with the 8 that are induced in blue

3.4  The Null Graph
In the diagram the “null graph”, G0, is given as a subgraph although there is
some debate amongst mathematicians on whether this empty graph is a valid
entity or not. Many feel that it causes so much trouble and unnecessary issues
that it is better to exclude it from Graph Theory altogether. Pragmatically,
whether to include it as a valid and useful graph depends on context and
convenience. In any theorem that involves the counting of graphs, check if the
null graph is included.
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3.5  Clique and Maximal Clique
In a social group a collection of people who all know each other is referred to as
a clique. This situation has an analogy in Graph Theory where the social group is
the graph, and a clique is an induced subgraph that is complete. 



Amy

Bob

Cindy Flo

Dede Ed


The illustration shows who is friends with who in a class of six schoolchildren.
Amy, Bob and Cindy form a clique because each is friends with the other two.
Cindy, Dede, Ed and Flo do not form a clique because Ed and Cindy are not
friends, for example. Although Amy, Bob and Cindy form a clique, their clique
is not maximal because Flo can be added into the friendship group and each
possible pairing amongst the four is a friendship relation. The clique of Amy,
Bob, Cindy and Flo is now maximal because no further child can be added to the
four that would result in a larger clique. Notice that Dede and Ed, for example,
also form a maximal clique as each member of that clique knows all the others,
and no other child can be added that would result in a larger clique.


The following diagram illustrates the fact that any vertex induced subgraph of a
complete graph forms a clique.



K5 K4 K3 K2 K1

⇒ ⇒ ⇒ ⇒

 ( ) ⇒ ( ) ⇒ ( ) ⇒ ( ) ⇒ (0)

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1
1 0 1
1 1 0

0 1
1 0
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3.6  Some Other Pieces of Graph
Having dealt briefly with the subgraphs of a graph, we return to this lecture's
main theme which was “patterns within a graph”. A crucial next step is to
identify three entities known as path, trail and walk.



Definition : Path (of Distinct Vertices)
A path onn distinct vertices in a graphG is denoted, . Discussed in section
1.3, a path will have two end vertices of degree at least 1 and thread its way
through each of the remaining  vertices which will each be of degree at
least 2. To emphasise; a path with at least one edge cannot be closed, that is, the
first and last vertex cannot be the same vertex.

Pn

(n − 2)



A path, P7, (in red) on 7 vertices in graph G1169


Definition : Trail (of Distinct Edges)
A trail in a graphG is a (possibly empty) sequence of distinct edges inG such
that any two consecutive edges in the sequence are incident to a common vertex.
A trail allows repetitions of the same vertex whereas a path does not. If a non
empty trail has only the first and last vertices equal it is termed acycle or closed
trail. If, in addition to having the same first and last vertex, it has other vertices
occurring more than once it is termed a circuit.



Definition : Walk
A walk on a graphG drops the requirement that the edges in the sequence of
edges be distinct. Aclosed walk is a walk where the start and the finish are the
same vertex.
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3.7 The Eularian Edge Traveller
Given a connected graph, we can unleash upon it the Eularian Edge Traveller.
This can be thought of as a spider that attempts to find a way to crawl along a
closed trail that traverses each and every edge in the graph once and once only,
starting and finishing at the same vertex. If such a closed trail can be found the
graph is said to be Eularian and the trail said to be a Eulerian trail.
For example, the graph below left (with red vertices) is Eularian and by way of
demonstrating this a Eularian trail is shown in the central diagram (with blue
vertices) threading its way through each edge once and once only.
Note that in this particular example there are other valid closed trails (even from
the same start/finish vertex) that could have been used show that the graph is
Eularian.

Start and Finish Start and Finish

3.8  The Hamiltonian Vertex Visitor
Given a connected graph, we can unleash upon it the Hamiltonian Vertex
Visitor. This can again be thought of as a spider. This time, however, it attempts
to find a way to crawl in a cycle  that passes through every vertex in the graph
once and once only. If such a cycle can be found the graph is said to be
Hamiltonian and the cycle is said to be a Hamiltonian cycle.
For example, the graph above left (with red vertices) is Hamiltonian. The third
diagram in the illustration (with green vertices) shows this by exhibiting a closed
trail that visits each vertex exactly once.
Note that in this particular example there are other valid cycles that could have
been used to show that the graph is Hamiltonian.
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3.9  Proofs
In this final section, we work our way through a sequence of “classic”
elementary graph theory proofs to do with the connectivity of graphs.



Lemma 3.1 : On the Degree of the Vertices of an Eulerian Graph
If G is an Eulerian graph, then each vertex of G has even degree.

Proof
If G is Eulerian, then there is an Eulerian trail, that is, a closed trail that traverses
each and every edge in the graph once and once only. Whenever this trail passes
through a vertex there is a contribution of +2 to the degree of that vertex. Since
each edge is used just once, the degree of each vertex is a sum of 2s. But that is
precisely what an even number is. Thus, each vertex is of even degree.             ̧

Lemma 3.2 :  Eulerian Graph Decomposition
A graph that is Eulerian (and therefore connected) can be decomposed into
distinct cycles, no two of which have an edge in common.

Proof
The first cycle is obtained by starting at any vertexa and traversing edges in an
arbitrary manner, never repeating any edge. As the graph is Eulerian, each vertex
is of even degree, by Lemma 3.1, which guarantees that whenever a vertex is
entered, there is a way out. With only a finite number of vertices inG, eventually
a vertex b is reached that has been previously encountered.



a

b C1


The edges of the closed trail between the two occurrences of the vertexb form a
cycle,C1 which is now removed fromG, leaving a (possibly disconnected) graph
H in which each vertex has even degree. IfG is simplyC1 then we are done. If
not then the procedure is repeated to find inH a cycleC2 (which will not have
any edges in common with C1).



a

b C1
C2


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Removing the edges ofC2 from H leaves yet another graph in which each vertex
has even degree, and which therefore contains a cycle C3.



a

b
C1 C2

C3


By continuing in this manner there will eventually be no edges left but, along the
way, a set of distinct cyclesC1, C2, C3, ..., have been obtained that include
every edge of G, and no two of which have an edge in common.              ̧

Ck 

In Lemma 3.2 we began with the fact that a graph was Eularian to reason that
each vertex was of even degree (by Lemma 3.1) and then deduced that the graph
could be decomposed into distinct cycles. However, if we drop the initial
requirement that the graph be Eularian, the argument employed in proving
Lemma 3.2 will still apply from the starting point of having a graph with vertices
all of even degree. Such a graph can still be decomposed into distinct cycles.
Must it then be Eularian ? Our next lemma, Lemma 3.3, states that it is.

Lemma 3.3 : Graphs With Vertices All Even
If each vertex of a connected graph G has even degree, then G is Eulerian.

Proof
As just discussed, a connected graph in which each vertex is of even degree can
be decomposed into distinct cycles. To now show this graph is Eularian the
cycles or, rather, parts of the cycles, must be fitted together in some way to make
an Eularian trail. Here is an algorithm that will do this; start at any vertex of the
cycle C1 and travel roundC1 until the vertex of another cycle is encountered
such as, for example,C2. Now pass along the edges of this cycle before resuming
the journey aroundC1, traversing other new cycles as they are encountered. At
this juncture a closed trail that includesC1 and (unlessG is justC1) at least one
other cycle (sinceG is connected) has been traversed. If this trail includes all of
the cyclesC1, C2, C3, ..., then that is the required Eularian trail. If not, a
journey is commenced round the new closed trail, traversing other cycles as they
are met. There will always be at least one cycle to add to the previous closed trail
becauseG is connected. The process is repeated in this manner until all the
cycles have been traversed, whereupon the sought after Eularian trail is obtained.
From this is deduced that G is Eularian.              ̧

Ck 

Theorem 3.1 : Eularian IFF
A connected graph is Eularian if and only if each vertex has even degree.

Proof
Lemma 3.1 and Lemma 3.2 in combination prove this theorem.              ̧
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Lemma 3.4 : is HamiltonianKn 
The complete graph,  is Hamiltonian for all values of n. Kn,

Proof
The complete graph  for any given value of n can be drawn with one vertex atKn

each vertex of an n-gon as illustrated by the following diagram,


...

...

...

...

...

...

...

...

...

The perimeter of the diagram, highlighted in red, is the cycle subgraph of  Cn  Kn

which is a cycle that includes every vertex. 
This shows that contains a Hamiltonian cycle for all values ofn and so, by
definition, is Hamiltonian.              ̧

Kn 



Theorem 3.2 A Test For Hamiltonianism (Ore, 1960)

    deg (v) + deg (w) ≥ n If G is a simple graph with n (≥ 3) vertices, and if   for

each pair of non-adjacent vertices v and w, then G is Hamiltonian.

Proof (by contradiction)
Suppose, for a contradiction, thatG is a simple graph withn (≥ 3) vertices, and
with deg(v) + deg(w) ≥ n for each pair of non-adjacent verticesv andw but that
G is not Hamiltonian. Pick any two vertices ofG which are not already joined
by an edge and add a new edge between them. Keep on doing this until a graph

is obtained which, for the first time, does have a closed Hamiltonian path.
(This event must eventually occur because the complete graph onn vertices acts
as a “catching feature” because, by Lemma 3.4, the graph is Hamiltonian).

GLast 

Kn 
Let  be the graph immediately prior to , let {x, y} be the edge added
to to obtain  and let (  be a Hamiltonian cycle in

. This must use the edge {x, y} somewhere in the cycle because otherwise
would have had a cycle (which would contradict the earlier requirement

that it did not). 

GButOne GLast
GButOne GLast z1, z2, ..., zn, z1)

GLast
GButOne 

There are now two cases to consider;
Case 1 :
If {  = {x, y} then (  is a non-closed Hamiltonian path in

. Relabel the path's vertices (  such that x = v1 and 
zn, z1} z1, z2, ..., zn)

GButOne v1, v2, ..., vn) y = vn.
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Case 2 :
If { ≠ {x, y} then there must  be  somer  such  that  1≤ r < n and {x, y} =
{ } and (  is a non-closed Hamiltonian path in

. Relabel the path's vertices (  such that x = v1 and 

zn, z1}
zr, zr + 1 zr + 1, ..., zn, z1, ..., zr)

GButOne v1, v2, ..., vn) y = vn.


In both cases we emerge with a non-closed Hamiltonian path that is labelled
 with x = v1 and as illustrated below.(v1, v2, ..., vn) y = vn 


x v1 = y vn = 

vn − 1

......

vk − 1

vk + 1vk − 2

vk

v2

The focus now is upon the condition .deg (v) + deg (w) ≥ n
The key observation is to note that for any vertex in the path thatx is adjacent to,
(say where 2≤ k ≤ n), y cannot be adjacent to the preceding vertex in the path
(say where 2≤ k ≤ n ) because the edge {x, y} was specifically removed
when constructing GButOne from GLast.

vk 
vk − 1 

Suppose for the sake of argument thaty was adjacent to the preceding vertex as
shown with a broken line. This cannot be the case because if it were then we
would have the following Hamiltonian cycle, 

x, v2, ..., vk − 2, vk − 1, y, vn − 1, ..., vk + 1, vk, x

Notice that this is only an issue ify is adjacent to the preceding vertex; for any
other vertex a Hamiltonian cycle does not result.

     deg (y) ≤ n − 1 − deg (x)     deg (x) + deg (y) ≤ n − 1Consequently,  giving 

which contradicts the earlier condition that   for each
pair of non-adjacent vertices v and w.             ¸

deg (v) + deg (w) ≥ n

The following teaching video from “Wrath of Math” goes through a proof of
Ore's theorem along similar lines to that presented above;

Teaching Video: http://www.NumberWonder.co.uk/v9119/3.mp4

http://www.NumberWonder.co.uk/v9119/3.mp4
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3.10  Exercise
Marks Available : 60

Question 1
In section 1.3 acycle graph was defined as being a graph that consists of a single
cycle of vertices and edges and denoted  The example of C5 was given as;Cn.




Charles claims that, “If every vertex of a simple graphG has degree 2, thenG is
a cycle”. Exhibit a counterexample on six vertices that proves Charles is wrong.

[ 2 marks ]

Question 2
( i ) By first quoting a lemma or theorem, explain why G184 is not Eulerian.



n = 6,    m = 10

(2,  3,  3,  4,  4,  4)

G184

[ 1 mark ]

( ii ) Although not Eulerian, the graph is semi-Eulerian.
This means that there exists a (non-closed) trail that includes every
edge. Annotate the graph with such a trail.

[ 2 marks ]
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Question 3
Give an example of a connected graph on five vertices that is non-Eulerian (neither
Eularian nor semi-Eularian) that contains a cycle.

[ 2 marks ]

Question 4
Prove the following lemma;



Lemma 3.5 : Must Contain A Cycle
Any finite, connected graph, with more than two vertices, in which every vertex
is of degree of at least 2, must contain a cycle.

[ 4 marks ]
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Question 5
In each of the following four graphs, a part of the graph is highlighted in red.
Describe each of the highlighted configurations with one of the following;

( a ) “maximal clique”
( b ) “non-maximal clique”
( c ) “not a clique”

[ 4 marks ]

Question 6
The graph depicted below is of the complete graph, K5.
It contains a trail that traverses each edge once and once only, with all vertices
being encountered more than once.
Such a trail is, for example, 1, 2, 3, 4, 5, 1, 3, 5, 2, 4, 1
This is an example of an Euler circuit.



1

2
3 4

5


Explain why does not contain an Euler circuit when n is even.Kn  

[ 3 marks ]

Question 7
Give an example on four vertices of a connected graph that has no Hamilton
path.

[ 2 marks ]
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Question 8
For each of these connected graphs state if they have a Hamiltonian path or not.



[ 3 marks ]

Question 9
Show how Ore's Theorem correctly predicts that the following graph is
Hamiltonian, and then annotate the graph to show such a cycle.

n = 5,    m = 7

(2,  3,  3,  3,  3  )

G48 - Labelled

1

2
3

45

[ 3 marks ]

Question 10
Show that the cycle graph, C5, is Hamiltonian in spite of Ore's Theorem not
being satisfied.

[ 3 marks ]
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Question 11
Explain why the following graph is not Hamiltonian.



n = 7,    m = 9

(2,  2,  3,  3,   )

G573

5

2, 3,  3  

[ 3 marks ]

Question 12
A “Uniquely Hamiltonian Graph” is a graph possessing a single Hamiltonian cycle.
Determine which, if any, of the following are Uniquely Hamiltonian Graphs.
In each case, give a reason for your answer.



[ 3 marks ]
Question 13
Determine if each of the following graphs is
( i ) Eulerian
( ii ) Hamiltonian



[ 3 marks ]
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Question 14
Determine if the following graph is,
( i ) Eulerian
( ii ) Hamiltonian
Give a reason for each of your answers.



[ 4 marks ]
Question 15
The graph represents friendships between  a group of students where each vertex
is a student and each edge is a friendship. Is it possible for the students to sit
around a round table in such a way that every student sits between two friends ?
(With thanks to Oscar Levin for this question)



[ 4 marks ]
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Question 16
Prove the following corollary to Ore's Theorem,

Corollary 3.1 : Dirac's Theorem

   deg (v) ≥
 n 
 2 

If G is a simple connected graph with n vertices, where n ≥ 3, and

for each vertex v, then G is Hamiltonian.

Hint : Use Ore's Theorem !

[ 4 marks ]

Question 17

Consider the following pentomino,  

( i ) Draw a graph G of this pentomino with five vertices and 4 edges.

[ 1 mark ]
( ii ) Draw a distinct pentomino whose graph is isomorphic to G.

[ 1 mark ]
( iii ) Draw two distinct pentominos whose graphs are not isomorphic to

G, not isomorphic to each other, and not isomorphic to the path, P5

[ 3 marks ]
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Question 18
In answering question 3, you will have found that the vertices of odd degree
played a key role; one being the start of the (non-closed) trail and the other the
finish. With that in mind the following lemma will not come as a surprise.



Lemma 3.6 : Semi-Eularian IFF
A connected graph is semi-Eulerian if and only if it has exactly two vertices of
odd degree.


 Prove lemma 3.4.

[ 5 marks ]
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