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Lecture 2
Undergraduate Lectures in Mathematics

A Third Year Course
 Graph Theory I

2.1  The Adjacency Matrix
By definition, the verticesv andw of a graph areadjacent vertices if they are
joined by an edge,e. If G is a graph withn vertices (labelled 1, 2, 3, ...,n) then
the adjacency matrix A  of G is then × n square matrix in which the entry

is the number of edges joining the verticesi andj. For a graph that issimple
the entry can only be 0 or 1. Below, as an example, is the graph G94 which has
been labelled and next to it is given its adjacency matrix.  The top row of this
adjacency matrix shows that the vertex labelled1 is connected only to the vertex
labelled 2, the second row shows that the vertex labelled2 has a direct
connection to the vertices labelled1, 3 and4, and subsequent rows show how
the remaining vertices connect.

(G)
aij 

n = 6,    m = 6

(1,  1,  1,  3,  3,  3)

G94 - Labelled
1

2

3 4

5 6

( 94) = ( )A G

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

In general the adjacency matrix of a simple graph will be symmetric and have a
leading diagonal of all zeros. Interest in adjacency matrices centres around
identifying properties of graphs that are captured by them. For example, the trace
of a square matrix is the sum of its diagonal entries and denoted bytr(A). It turns

out that  gives twice the number of edges of the associated graph andtr ( 2)A
tr ( 3)  A gives six times the number of triangles, as illustrated below.

2
( = ( ) ⇒ tr ( 2

( )) = 12   ∴ 6 edgesA G94)

1 0 1 1 0 0
0 3 1 1 1 1
1 1 3 1 0 1
1 1 1 3 1 0
0 1 0 1 1 0
0 1 1 0 0 1

A G94

3
( ) = ( ) ⇒ tr ( 3

( ) = 6     ∴ 1 triangleA G94

0 3 1 1 1 1
3 2 5 5 1 1
1 5 2 5 3 1
1 5 5 2 1 3
1 1 3 1 0 1
1 1 1 3 1 0

A G94)
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Performing calculations and manipulations on large matrices is tedious by hand
and more reliably done using computer software.
Let φ  denote the characteristic polynomial of A .(X, x) (x)
For the adjacency matrix A(G94) software gives its characteristic equation as,

φ (X, x) = ( x2 − 2x − 1 ) ( x2 + x − 1 )2
The spectrum of a matrix is the list of its eigenvalues together with their
multiplicities. For A(G94) the spectrum is,



 1 ±  2 ,  

− 1 ±  5  
 2 

(2)



where the superscripts give the multiplicities that are greater than one.

    α = 1 ±  2  ,    β =
− 1 ±  5  

 2 
  Let and

  The six eigenvectors of A(G94) are then,

v (λ = α) = ( )  v (λ = β) = ( ) ,  ( )1
α
α
α
1
1

− 1
− β
0
β
0
1

− 1
− β
β
0
1
0

Of ongoing interest is determining if two graphs are isomorphic from the
mathematics associated with them. If two graphs,G andH are isomorphic then,
although they have different adjacency matricesA(G) andA(H), they will have
the same characteristic equation and spectrum. However, this cannot be used the
other way round; cospectral graphs are not isomorphic, yet have the same
characteristic equation and spectrum.

n = 6,    m = 7 n = 6,    m = 7

G115 G117

( 1,   2,  2,  5 ) ( 1,  1,  3,  3,   )2, 2, 3, 3

G115 and G117 provide an example of cospectral graphs. They are clearly not
isomorphic as G115 has one vertex of degree 1 (a leaf) whereas G117 has two.
Yet they both have the same characteristic equation.

φ ( 115, x) = φ ( 117, x) = ( x − 1|) ( x + 1|)2 ( x3 − x2 − 5x + 1 )G G
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An objective of this lecture is to show that, in spite of the cospectral set back, it
is possible to determine if two graphs are isomorphic from their adjacency
matrices. However, to do so requires the prior development of a few ideas and it
is to these we now attend.

2.2  Transposed Matrices
Here is a brief reminder of what the transpose of a matrix is.

The Transpose of an n × n Matrix

  = ( )   Given the matrix M

a11 a12 ... a1n

a21 a22 ... a2n

... ...   ... ...
an1 an2 ... ann

the transpose of matrix M

   is denoted M
T

and is formed by an interchange of rows and columns.

  = (  )Thus, M
T

a11 a21 ... an1

a12 a22 ... an2

... ... ... ...
a1n a2n ... ann

2.3  Symmetric Matrices

  . A matrix, M, is symmetric if  M = M
T

 Such matrices are readily recognised for

their elements are symmetric with respect to the leading diagonal. The adjacency
matrix of a graph is symmetric as are powers of that matrix which means that the
properties of such matrices will be of importance. 

2.4  Permutation Matrices
A permutation matrix,P, is ann × n square matrix such that each row and each
column contains a single element equal to 1, the remaining elements being 0. 
Consider the following calculation which involves a permutation matrix, 

( ) ( ) = ( )0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

a
b
c
d
e

d
b
a
e
c

This permutation matrix has permutated the letters a, b, c, d, e  as shown below,

( )a b c d e

↓ ↓ ↓ ↓ ↓
d b a e c

In cycle notation this permutation could be written (adec)(b) or just (adec).
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A permutation matrix can permutate an entire matrix in two different ways as the
following two calculations illustrate,



( ) ( ) = ( )0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

a f k p u

b g l q v

c h m r w
d i n s x
e j o t y

d i n s x
b g l q v

a f k p u

e j o t y

c h m r w


( ) ( ) = ( )a f k p u

b g l q v

c h m r w
d i n s x
e j o t y

0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

p f a u k

q g b v l

r h c w m
s i d x n
t j e y o


In the first calculation it is the rows of the lettered matrix that have been
permutated. Notice that in the second of these calculations the transpose of the
permutation matrix has been used. In this calculation it is the columns of the
lettered matrix that have been permutated. 

All of this illustrates the next theorem.


Theorem 2.1 : Permutating Rows and Columns
Given a square matrix,S, and a permutation matrix,P, multiplying byP on the

left permutates the rows ofS, whilst multiplying byP on the right permutates
the columns. 

 T

PS permutates rows of S

 SP
T

permutates columns of S

In general there aren! permutation matrices of sizen × n. Of the six 3 × 3
permutation matrices three are elementary permutation matrices that swap just
two rows or two columns. Here are those six matrices. Those that are elementary
are highlighted in red, and the (left multiplying) permutating effect they would

have on the column vector  is given immediately underneath each.(a, b, c)T


( ) , ( ) , ( ) , ( ) , ( ) , ( )1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

0 0 1
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

(a) (b) (c)         (bc)             (ac)             (ab)            (acb)           (abc)  


In general, of then! permutation matrices of dimensionn × n the number that are
elementary is given by the triangular number  where,Tn − 1

Tn =
 n ( n + 1 )  

 2 
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Clearly, any permutation matrix raised to a sufficient power will yield the
identity matrix,I. The following demonstrates this fact for each of the six 3× 3
permutation matrices;



( ) ( )2 ( )2 ( )2  ( )3 ( )31 0 0
0 1 0
0 0 1

 = 
1 0 0
0 0 1
0 1 0

= 
0 0 1
0 1 0
1 0 0

= 
0 1 0
1 0 0
0 0 1

=
0 0 1
1 0 0
0 1 0

= 
0 1 0
0 0 1
1 0 0

(a) (b) (c)  =     (bc)2   =    (ac)2    =    (ab)2     =   (acb)3   =  (abc)3      


In general, a non-elementary permutation matrix can be decomposed into a
product of elementary permutation matrices. Again, this is a fact that can be
demonstrated for the 3 × 3s, although there is a catch, shortly to be explained;



( ) ( )2 ( )2 ( )21 0 0
0 1 0
0 0 1

 = 
1 0 0
0 0 1
0 1 0

= 
0 0 1
0 1 0
1 0 0

= 
0 1 0
1 0 0
0 0 1

(a) (b) (c)  =     (bc)2   =    (ac)2     =    (ab)2     


( ) = ( )  ( )0 1 0
0 0 1
1 0 0

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

(abc)    =      (ac)           (ab)


( ) = ( ) ( )0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

(acb)    =      (ab)           (ac)


The astute reader looking at the above three matrix equations may be wondering

  ( )  why the matrix 
1 0 0
0 0 1
0 1 0

can be associated with different permutations. This is

a much glossed over issue that an internet search will do little to explain. When

this matrix acts on  it represents the permutation (bc). However when

it acts upon  it represents (ac) and when it acts upon  it
represents the permutation (ab). Marrying up a matrix with the permutation it
represents is not as straight forward as one might initially have expected; it
depends upon how preceding matrices have permutated the rows (or columns).

(a, b, c)T

(b, a, c)T (c, b, a)T

Permutations and their manipulation in cycle notation are covered in the Number
Wonder undergraduate lectures, Group Theory II.
https://www.NumberWonder.co.uk/Pages/Page9110.html

https://www.NumberWonder.co.uk/Pages/Page9110.html
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2.5  Orthogonality
A matrix, Q, is described as being orthogonal if it is a real square matrix and has

the property thatQQ  = Q Q = I whereQ  is the transpose ofQ andI is the
identity matrix. This immediately leads to an equivalent characterization of

orthogonality; Q is orthogonal if its transpose is equal to its inverse, if Q  = Q

T T T

T



Definition : An Orthogonal Matrix
A real matrix is orthogonal iff it is invertible and its inverse is its transpose.


The interest in orthogonality stems from the fact that permutation matrices have
this property. For example, here the permutation introduced at the start of section
2.4 is multiplied by its transpose and the result, as claimed, is indeed the 5× 5
identity matrix,

( ) ( ) = ( )0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Theorem 2.2 : Permutation Matrices are Orthogonal
The product of a permutation matrix and its transpose gives the identity matrix.

      =  ⇔  
− 1

=That is, P P
T

I P P
T

If follows that permutation matrices are orthogonal.

Proof
Clearly then × n identity matrix,I, is orthogonal for all positive integer values of
n. If any two rows inI or any two columns inI are swapped the result is an
elementary permutation matrix which retains the property of being orthogonal
because it is still symmetric and still coincides with its inverse. This proves the
theorem in the case of the elementary permutation matrices. 
Any non-elementary permutation matrix,P, can be decomposed into a product of
elementary permutation matrices, P1P2 ... P  and we now argue as follows;k

− 1 ( 1 2 ... k)
− 1 − 1

k ... 
− 1
2

− 1
1 k  ... 2  1 ( 1 2 ... k)P  = P P P  = P P  P  = P

T
P

T
P

T
 = P P P

T
 = P

T

which completes the proof.
             ̧

2.6  Isomorphism
For two graphs to be isomorphic there are many properties that must be
common. They must have the same number of vertices, or edges, or spectrum,
for example. However, non isomorphic graphs can have the same number of
edges, for example, and it was shown previously that non isomorphic graphs can
even have the same spectrum (cospectral graphs). Determining if two graphs are
isomorphic or not can be a frustrating business. As all of the structure of a graph
is captured by its adjacency matrix it is in principle possible to determine if two
graphs are isomorphic. Write down the adjacency matrix of each, and then
search for a permutation matrix for which Theorem 2.3, stated next, holds. 
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Theorem 2.3  :  Isomorphism  via Adjacency Matrices 
Let G andH be graphs on the same vertex set and with adjacency matricesA(G)
and A(H) respectively. ThenG andH are isomorphic if and only if there is a
permutation matrix P such that,

(G)   = (H)P
T

A P A


Being able to state Theorem 2.3 and to have developed the mathematics to
understand what it is saying has been the goal of this lecture. However, in some
respects it is a damp squib. This is because in practice, theorem 2.3 is of limited
use in the general case; for a graph withn vertices, there aren! candidates to be
the sought after permutation matrix.

2.7  Exercises
Marks Available : 80

Question 1
( i ) Write down the adjacency matrix A(G17) for G17, shown below,



n = 4,    m = 5

(2,  2,  3,  3   )

G17 - Labelled

12

3 4

[ 2 marks ]

  
2

(  ( ii ) By hand, write down the matrix  A G17)which will give the number

of walks of length 2 between the various vertices.

[ 2 marks ]
( iii ) Verify from the graph of G17 that there are three walks of

length 2 between vertex 1 and itself.

[ 1 mark ]
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Question 2

  = ( )   Let A

a11 a12 ... a1n

a21 a22 ... a2n

... ...   ... ...
an1 an2 ... ann

be the adjacency matrix of a labelled graph G

   aij vi vj,  where the entry is 1 if there is an edge between vertex and and 0 otherwise.

  
2

( i ) Write down an expression for the top left entry of A

[ 1 mark ]
( ii ) Explain why this counts the number of walks of length 2 between 

vertex 1 and itself.

[ 2 marks ]

  ( iii ) Building on your part (ii) answer, explain why   gives twice  tr ( 2)A

    the number of edges of the associated graph.

[ 2 marks ]

  
2

= ( )( iv ) A graph, H, has adjacency matrix H such that  H

1 0 1 1
0 3 1 1
1 1 2 1
1 1 1 2

Draw the graph of H.

[ 2 marks ]
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Question 3
The graphs G991 and G1008, shown below, are clearly not isomorphic as they have
different degree sequences.



n = 7,    m = 12

(2,  3,  4,  4,   

G991 - Labelled

4

3,

312

5

6 7

4,  4  )
n = 7,    m = 12

(3,  3,  3,  3,   

G1008 - Labelled

1

3,

23

4

5 6

7

3,  6  )


( i ) Write down the adjacency matrix for each graph.

[ 2 marks ]
( ii ) Use software to find the characteristic polynomials for G991 and 

G1008 and hence deduce that these two graphs are cospectral.

[ 4 marks ]

( iii ) Find the characteristic polynomial for the square of each adjacency
matrix and comment.

[ 4 marks ]
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Question 4


Theorem 2.4 : Counting walks between vertices
Given a simple graph G with adjacency matrix A, raising A to the power n gives
a matrix where the entry  gives the number of walks of length n between theaij

vertices vi  vjand


Write out a proof by induction for Theorem 2.4

[ 6 marks ]
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Question 5

  For a simple graph G with adjacency matrix A, explain why tr ( 3)  A gives six times

the number of triangles in G.  
You may quote Theorem 2.4 (from question 4) as a part of your explanation.

[ 4 marks ]

Question 6


Lemma 2.1 : Disconnected Detector
For a graph G of order n and adjacency matrix A, calculate matrix S  where,n

n = +
2

+
3

+ ... +
n

S A A A A

If there are any zeros in S  then the graph is not connected.n


Give a short proof of Lemma 2.1
You may quote Theorem 2.4 (from question 4 )as a part of your explanation.

[ 3 marks ]
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Question 7


Lemma 2.2  Shortest Path Between a Vertex Pair
For a graph G of order n and adjacency matrix A, calculate matrix S  where,k

k = +
2

+
3

+ ... +
k
,    k ≤ nS A A A A

The entry in row i and column j of matrix S  tallies the number of ways to getk

from vertex to vertex in k steps or less. (A step is the traversal of an edge).vi vj 
To find the shortest number of steps between and  begin to calculate thevi vj 
partial sums S1, S2, S3, ..., S . Then, the first value of k for which the entry inn

row i and column j of matrix S  is non-zero is the shortest number of steps.k



  = ( )A graph, G, has adjacency matrix,  A

0 1 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

( i ) As necessary, use software to write down A1, A2, A3 and A4

[ 4 marks ]

( ii ) Use your part (i) answer to write out the Shimbel Matrix, M, for G
where the entry row i and column j of matrix M is the least number 
of steps between the vertices and vi vj 

[ 3 marks ]

( iii ) The diameter of a graph is the shortest path between the most distant 
distant minimum vertices. This is the largest value in the Shimbel Matrix.
State the diameter of G.

[ 1 mark ]
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Question 8
A “simple” 4-cycle is a closed walk around four distinct vertices of the form
va vb vc vd va -  -  -  - 
This excludes walks of the form  va vb va vb va -  -  -  - 

  and va vb va vd va -  -  -  - 
  and va vb vc vb va -  -  -  - 



Algorithm 2.1 : Counting Simple 4-Cycles
For a graph G with adjacency matrix A, the number of proper 4-cycles is,

 1 
 8 ( tr ( 4) − 2 ∑

n

i = 1

(( a(2)
ii  ) (a(2)

ii − 1)) −  tr ( 2))A A


( i ) From question 1, for the graph of G17 we know that,



n = 4,    m = 5

(2,  2,  3,  3   )

G17 - Labelled

12

3 4

 = ( )A(G17)

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

2
= ( )A (G17)

3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2


Show that Algorithm 2.1 correctly finds a single simple 4-cycle in G17.

[ 3 marks ]
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( ii ) Use Algorithm 2.1 to find the number of simple 4-cycles in the graph
G877 which is shown below. This graph is sufficiently small so that
you can see what the correct answer should be !



2 1

3 4

5

67

8

910

11

[ 4 marks ]
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Question 9
Using matrix methods, how many simple 4-cycles are there in the graph,

   K4( i )

[ 2 marks ]

   K7( ii )

[ 3 marks ]

   Kn( iii )

[ 5 marks ]
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Question 10


Algorithm 2.2 : Counting Simple 5-Cycles
For a graph G with adjacency matrix A, the number of proper 5-cycles is,

 1 
 10 ( tr ( 5) − 5 ∑

n

i = 1

(( a(3)
ii  ) (a(2)

ii − 2)) − 5 tr ( 3))A A


Shown is the graph and adjacency matrix for the Petersen graph.


1

2

3 4

5

6

7

8
9

10 = ( )A

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0


Use Algorithm 2.1 to find the number of simple 5-cycles in the Petersen graph.

[ 5 marks ]
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Question 11
The purpose of this question is to investigate the isomorphisms (if any) between
the three (labelled) graphs presented below.


1

2 3

4
56

7 8

9
10

11

12

1

2

3

4

5

6

7
8

9

10
11

12

1

2 3 4

567

8

9
10 11

12


( i ) State the number of vertices of each graph.

Does this identify if any of the three are non-isomorphic to the others ?

[ 1 mark ]

( ii ) State the number of edges of each graph.
Does this identify if any of the three are non-isomorphic to the others ?

[ 1 mark ]
( iii ) State the degree sequence of each graph.

Does this identify if any of the three are non-isomorphic to the others ?

[ 1 mark ]

( iv ) Construct the adjacency matrix for each graph.

[ 3 marks ]
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( v ) Use computer software to cube each graph's adjacency matrix.

For each of these matrices calculate .tr ( 3 )A
Hence state the number of triangles in each graph.
Does this identify if any of the three are non-isomporphic to the others ?

[ 3 marks ]

( vi ) Use software to determine the characteristic equation for each graph's
adjacency matrix and hence find the associated spectrum.
Does this identify if any of the three are non-isomporphic to the others ?

[ 6 marks ]
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