Lesson 9

A-Level Pure Mathematics : Year 2

Integration III

9.1 Revision

Show sufficient working to make your methods clear.
Marks Available : 40

Question 1

(a) Find $\int(2 x-1)^{\frac{3}{2}} d x$ giving your answer in its simplest form.

The sketch shows part of the curve C with equation $y=(2 x-1)^{\frac{3}{2}}, x \geqslant \frac{1}{2}$ which cuts the line $y=8$ at point P with coordinates $(k, 8)$, where k is a constant. (b) Find the value of k
(c) Find the shaded area, S, bounded by the coordinate axes, $y=8$ and C.

Question 2

A-Level Examination Question from October 2021, Paper 2, Q12 (Edexcel)
(a) Use the substitution $u=1+\sqrt{x}$ to show that,

$$
\int_{0}^{16} \frac{x}{1+\sqrt{x}} d x=\int_{p}^{q} \frac{2(u-1)^{3}}{u} d u
$$

where p and q are constants to be found.
(b) Hence show that, $\int_{0}^{16} \frac{x}{1+\sqrt{x}} d x=A-B \ln 5$ where A and B are constants to be found.

Question 3

A-Level Examination Question from October 2021, Paper 1, Q11 (Edexcel)

The graph shows part of the curve with equation, $y=(\ln x)^{2}, x>0$. The finite region R, shown shaded, is bounded by the curve, the line with equation $x=2$, the x-axis and the line with equation $x=4$. The table below shows corresponding values of x and y, with the values of y given to 4 decimal places.

x	2	2.5	3	3.5	4
y	0.4805	0.8396	1.2069	1.5694	1.9218

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of R. giving your answer to 3 significant figures.
(b) Use algebraic integration to find the exact area of R, giving your answer in the form,

$$
y=a(\ln 2)^{2}+b \ln 2+c
$$

where a, b and c are integers to be found.

Question 4

A-Level Examination Question from October 2021, Paper 1, Q14 (Edexcel)
Given that $y=\frac{x-4}{2+\sqrt{x}}, x>0$, show that $\frac{d y}{d x}=\frac{1}{A \sqrt{x}}, x>0$ where A is a constant to be found.

Question 5

The graph is of the curve C with parametric equations,

$$
x=\cos ^{3} \theta, \quad y=12 \sin \theta, \quad 0 \leqslant \theta<2 \pi
$$

The finite region in the first quadrant, bounded by C and the coordinate axes, is shown shaded. The curve is symmetrical in both the x and the y axis.
(a) Show that the area of the shaded region is given by the integral,

$$
36 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta
$$

(b) Use trigonometric identities to show that,

$$
\cos ^{2} \theta \sin ^{2} \theta=\frac{1}{8}(1-\cos 4 \theta)
$$

[4 marks]

(c) Hence find, in terms of π, the total area enclosed by C.

