Lesson 9

A-Level Pure Mathematics : Year 2 Integration III

9.1 Revision

Show sufficient working to make your methods clear. Marks Available : 40

Question 1

(**a**) Find $\int (2x - 1)^{\frac{3}{2}} dx$ giving your answer in its simplest form.

The sketch shows part of the curve C with equation $y = (2x - 1)^{\frac{3}{2}}$, $x \ge \frac{1}{2}$ which cuts the line y = 8 at point P with coordinates (k, 8), where k is a constant. (**b**) Find the value of k

[2 marks]

(c) Find the shaded area, S, bounded by the coordinate axes, y = 8 and C.

[4 marks]

Question 2

A-Level Examination Question from October 2021, Paper 2, Q12 (Edexcel)

(a) Use the substitution $u = 1 + \sqrt{x}$ to show that,

$$\int_{0}^{16} \frac{x}{1 + \sqrt{x}} \, dx = \int_{p}^{q} \frac{2(u - 1)^{3}}{u} \, du$$

where p and q are constants to be found.

[3 marks]

(**b**) Hence show that,
$$\int_{0}^{16} \frac{x}{1 + \sqrt{x}} dx = A - B \ln 5$$

where A and B are constants to be found.

Question 3 *A-Level Examination Question from October 2021, Paper 1, Q11 (Edexcel)*

The graph shows part of the curve with equation, $y = (\ln x)^2$, x > 0. The finite region *R*, shown shaded, is bounded by the curve, the line with equation x = 2, the *x*-axis and the line with equation x = 4. The table below shows corresponding values of *x* and *y*, with the values of *y* given to 4 decimal places.

x	2	2.5	3	3.5	4
у	0.4805	0.8396	1.2069	1.5694	1.9218

(**a**) Use the trapezium rule, with all the values of *y* in the table, to obtain an estimate for the area of *R*. giving your answer to 3 significant figures.

(**b**) Use algebraic integration to find the exact area of *R*, giving your answer in the form,

$$y = a(ln 2)^{2} + b ln 2 + c$$

where *a*, *b* and *c* are integers to be found.

[5 marks]

Question 4

A-Level Examination Question from October 2021, Paper 1, Q14 (Edexcel) Given that $y = \frac{x-4}{2+\sqrt{x}}$, x > 0, show that $\frac{dy}{dx} = \frac{1}{A\sqrt{x}}$, x > 0where A is a constant to be found.

[4 marks]

Question 5

The graph is of the curve C with parametric equations,

 $x = \cos^3 \theta$, $y = 12 \sin \theta$, $0 \le \theta < 2\pi$

The finite region in the first quadrant, bounded by C and the coordinate axes, is shown shaded. The curve is symmetrical in both the x and the y axis.

(**a**) Show that the area of the shaded region is given by the integral,

$$36\int_0^{\frac{\pi}{2}}\sin^2\theta\cos^2\theta\,d\theta$$

(**b**) Use trigonometric identities to show that,

$$\cos^2\theta\sin^2\theta = \frac{1}{8}(1-\cos 4\theta)$$

[4 marks]

(c) Hence find, in terms of π , the total area enclosed by C.

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk