5.1 Year 2 Integration: Examination Questions

The formulae book provided in the examination gives the derivative of many functions. These are identified with a * in the table below, which also highlights several key results that are NOT provided. Used backward, the table gives integrals.

f(x)	f'(x)	Given?
sin x	cos x	
cos x	- sin x	
tan x	$sec^2 x$	*
sec x	sec x tan x	*
CSC X	$-\csc x \cot x$	*
cot x	$-csc^2x$	*
ln x	$\frac{1}{x}$	
$ln \mid sec \mid x \mid$	tan x	*
ln sin x	cot x	*
ln sec x + tan x	sec x	*
$\ln \left \tan \left(\frac{1}{2} x + \frac{1}{4} \pi \right) \right $	sec x	*
$-\ln \csc x + \cot x $	csc x	*
$ln \mid tan\left(\frac{1}{2}x\right) \mid$	csc x	*
e^{x}	e^x	

As has been seen, many questions require the application of a trigonometric identity, but the useful identities are not given explicitly.

The three key identities should be memorised;

$$\cos^{2} \theta + \sin^{2} \theta = 1$$
$$\cos^{2} \theta - \sin^{2} \theta = \cos 2\theta$$
$$2 \sin \theta \cos \theta = \sin 2\theta$$

From the *three key*, the *following four* are easily obtained;

$$1 + tan^{2}\theta = sec^{2}\theta$$

$$cot^{2}\theta + 1 = csc^{2}\theta$$

$$2 cos^{2}\theta = 1 + cos 2\theta$$
 Essential to find $\int cos^{2}\theta d\theta$

$$2 sin^{2}\theta = 1 - cos 2\theta$$
 Essential to find $\int sin^{2}\theta d\theta$

Either memorise the *following four*, or learn how to obtain them from the *three key*.

5.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 28

When trigonometry and calculus mix, RADIANS MUST BE USED!

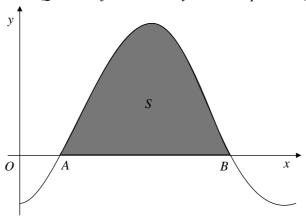
Question 1

A-Level Examination Question from January 2010, Paper C4, Q8 (a) (Edexcel) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of

$$\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4 - x^2}} \ dx$$

Question 2

A-Level Examination Question from January 2013, Paper C4, Q6 (a) (Edexcel)



Shown is a sketch of the curve with equation $y = 1 - 2 \cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and the point B. Find, in terms of π , the x coordinate of the point A and the x coordinate of the point B.

Question 3

A-Level Examination Question from June 2013, Paper C4, Q5 (Edexcel)

(a) Use the substitution $x = u^2$, u > 0, to show that,

$$\int \frac{1}{x \left(2 \sqrt{x} - 1\right)} dx = \int \frac{2}{u \left(2u - 1\right)} du$$

[3 marks]

(**b**) Hence show that

$$\int_{1}^{9} \frac{1}{x \left(2 \sqrt{x} - 1\right)} dx = 2 \ln \left(\frac{a}{b}\right)$$

where a and b are integers to be determined.

Question 4

A-Level Examination Question from June 2004, Paper P3, Q4 (Edexcel) Use the substitution $u = 1 + \sin x$ and integration to show that

$$\int \sin x \cos x \, (1 + \sin x)^5 \, dx = \frac{1}{42} (1 + \sin x)^6 \, (6 \sin x - 1) + constant$$

[8 marks]