### Lesson 3

## A-Level Pure Mathematics : Year 1 Graphwork

### 3.1 A New Transformation

A transformation not encountered at GCSE level is that of inversion.

Given a function, f(x), the inversion of this function is  $\frac{1}{f(x)}$ .

Although not recommended, this could be written as  $[f(x)]^{-1}$  but notice that, in general, this is not the same as  $f^{-1}(x)$  which is the inverse function.

### In general, this is not the same as f(x) which is the inverse fu

## Inversion

The transformation inversion is the taking of the reciprocal of a given function.

Under inversion,  $f(x) \rightarrow \frac{1}{f(x)}$ 

### **3.2 Example (Sine Function)**

On the graph below, in red, is the familiar sine function, f(x) = sin x and, in



Notice that,

- as the reciprocal of  $\pm 1$  is also  $\pm 1$ , points on the lines  $y = \pm 1$  are invariant.
- the inversion has a vertical asymptote each time the sine function is zero.

Traw in the vertical asymptotes on the graph.

# 3.3 Example (Power Function)



#### 3.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 72

## **Question 1**

A-Level C1 Examination Question from May 2014, Q4



The diagram shows a sketch of the curve C with equation

$$y = \frac{1}{x} + 1 \qquad x \neq 0$$

The curve *C* crosses the *x*-axis at the point *A*.

(**a**) State the *x* coordinate of the point *A*.

[1 mark]

The curve D has equation  $y = x^2(x - 2)$  for all real values of x.

(b) Add a sketch of curve *D* to the diagram, above.Show the coordinates of each point where the curve *D* crosses the axes.

[3 marks]

(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$x^{2}(x-2) = \frac{1}{x} + 1$$

[1 mark]

A-Level Examination Question from January 2009, Paper C1, Q8 (Edexcel) The point P (1, a) lies on the curve with equation

$$y = (x + 1)^2 (2 - x)$$

(**a**) Find the value of *a* 

[1 mark]

(**b**) On the axes below sketch the curves with the following equations;

(i) 
$$y = (x + 1)^2 (2 - x)$$
 (ii)  $y = \frac{2}{x}$ 

On your diagram show clearly the coordinates of any points at which the curves meet the axes.

[ 5 marks ]

(c) With reference to your diagram in part (b) state the number of real solutions to the equation

$$(x + 1)^{2}(2 - x) = \frac{2}{x}$$

[1 mark]



Graphed is the inversion of the sine function,  $f(x) = \sin x \rightarrow \frac{1}{f(x)} = \frac{1}{\sin x}$ 



Produce similar graphs for the inversion for,

(i) the cosine function, 
$$f(x) = \cos x \rightarrow \frac{1}{f(x)} = \frac{1}{\cos x}$$
  
(ii) the tangent function,  $f(x) = \tan x \rightarrow \frac{1}{f(x)} = \frac{1}{\tan x}$ 

These inversions have names, 
$$\frac{1}{\sin x} = \csc x$$
,  $\frac{1}{\cos x} = \sec x$ ,  $\frac{1}{\tan x} = \cot x$   
[3,3 marks]

For the curve with equation

$$y = (x - 1)^2 - 16$$

(i) write down the coordinates of the minimum point,

[1 mark]

(**ii**) expand the brackets, and hence write down the coordinates of where the curve crosses the *y*-axis,

### [1 mark]

(iii) factorise your part (ii) answer, and hence write down the coordinates of where the curve crosses the *x*-axis.

[1 mark]

(**iv**) Sketch the curve.

[ 2 marks ]

## **Question 5**

For the curve with equation

$$y = (x - 4)^2 + 1$$

explain, using mathematics, why it does not cross the x-axis.

[ 2 marks ]

A-Level Examination Question from January 2011, Paper C1, Q10 (Edexcel)(a) Sketch the graphs of

(i) 
$$y = x (x + 2) (3 - x)$$
 (ii)  $y = -\frac{2}{x}$ 

Show clearly the coordinates of all points where the curves cross the coordinate axes.

(**b**) Using your sketch state, giving a reason, the number of real solutions to the equation

$$x(x+2)(3-x) = -\frac{2}{x}$$

[ 2 marks ]

A-level Examination Question from January 2006, Paper C1, Q10 (Edexcel)

$$x^{2} + 2x + 3 \equiv (x + a)^{2} + b$$

(**a**) Find the values of the constants *a* and *b* 

[ 2 marks ]

(**b**) In the space provided below, sketch the graph of

$$y = x^2 + 2x + 3$$

Indicate clearly the coordinates of any intersections with the coordinate axes.

(c) Find the value of the discriminant of  $x^2 + 2x + 3$ Explain how the sign of the discriminant relates to your sketch in part (b)

[ 2 marks ]

The equation  $x^2 + kx + 3 = 0$ , where k is a constant, has no real roots.

(**d**) Find the set of possible values of k, giving your answer in surd form.

[4 marks]

*A-level Examination Question from January 2005, Paper C1, Q10* Given that

$$f(x) = x^2 - 6x + 18, \qquad x \ge 0$$

(**a**) express f(x) in the form  $(x - a)^2 + b$ , where a and b are integers.

[ 3 marks ]

The curve *C* with equation y = f(x),  $x \ge 0$ , meets the *y*-axis at *P* and has a minimum point at *Q* 

(**b**) Sketch the graph of C, showing the coordinates of P and Q

The line y = 41 meets C at the point R

(c) Find the coordinates of R, giving your answer in the form  $p + q\sqrt{2}$  where p and q are integers.

[ 5 marks ]

A-Level Examination Question from May 2010, Paper C1, Q10 (Edexcel)

(**a**) On the same axes sketch the graphs of the curves with equations

(i) y = x(4-x) (ii)  $y = x^2(7-x)$ 

showing clearly the coordinates of the points where the curves cross the coordinate axes.

[5 marks]

(**b**) Show that the *x*-coordinate of the points of intersection of

y = x(4 - x) and  $y = x^{2}(7 - x)$ are given by the solutions to the equation  $x(x^{2} - 8x + 4) = 0$ 

[ 3 marks ]

The point *A* lies on both the curve and the *x* and *y* coordinate of *A* are both positive.

(c) Find the exact coordinates of A, leaving your answer in the form

$$(p+q\sqrt{3},r+s\sqrt{3})$$

where p, q, r and s are integers.

### [7 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk