
Lecture 3
University Undergraduate Lectures in Mathematics

A First Year Course
 Group Theory II

3.1  Permutations
 Given a set of objects, a permutation of them is a re-arrangement of them

among themselves. For example, suppose there are four distinct vases on
a shelf. The easiest way to identify them is to assign an integer to each.

 They can now be permutated, for example by swapping vases 1 and 2
and swapping vases 3 and 4.

In two line permutation notation the rearrangement is captured by,

p = (  )  1   2   3   4
  4   3   2   1

A key questions is,
“How many different possible arrangements of the four vases are there ?”

4 ways of
putting
1st vase

here

3 ways of
putting
2nd vase

here

2 ways of
putting
3rd vase

here

1 way of
putting
4th vase

here

then then then

If the vases are taken off the shelf then, working from left to right, there are four
possible vases from which one could be randomly chosen to put back first. Then,
one of three possible vases could be randomly put back second with two possibilities
after that and, finally, the only vase not yet chosen is put back on the shelf. 



In total there are thus 4! possible permutations of the four vases.
All of these permutations under composition of permutations form a group
called the Symmetric group of degree four, S4

Here are all 24 permutations of S4, written in cycle notation, on a Cycle Graph;

(1 3 4 2) (1 2 4 3)

(1 4)(2 3)

(1 4 3 2)

(1 3)(2 4)

(1 2 3 4)

(1 3 2 4) (1 2)(3 4)

(1 4 2 3)

(2 3 4)

(2 4 3)

(1 3 4)

(1 4 3)

(1 2 4)

(1 4 2)
(1 3 2)

(1 2 3)
(1 2)

(1 4)

(1 3)

(2 3)

(3 4)

(2 4)

(1)(2)
(3)(4)

The Cycle Graph shows all the various cyclic subgroups of S4

•   The red petals show 6 cyclic subgroups of order 2
     They are: {e, (1 2)}, {e, (1 4)}, {e, (1 3)}, {e, (2 3)}, {e, (2 4)} and {e,(3 4)}
•   The green petals show 4 cyclic subgroups of order 3
     They are: {e, (2 3 4), (2 4 3)}, {e, (1 3 4), (1 4 3)}, {e, (1 2 4), (1 4 2)} and

       {e, (1 2 3), (1 3 2)}
•   The purple petals show 3 cyclic subgroups of order 4
     They are: {e, (1 3 4 2), (1 4)(2 3), (1 2 3 4)}, {e, (1 4 3 2), (1 3)(2 4), (1 2 3 4)}

        and {e, (1 3 2 4), (1 2)(3 4), (1 4 2 3)}



3.2  The Symmetric Group Sn

The Permutation Group, (Sn, �)
A permutation of a finite set S is a rearrangement of the elements of S.
Specifically, permutation is a one-to-one function from S onto S.
Typically, the set S equals {1, 2, 3, 4, ... , n} in which case the set is written Sn.
Under composition, “The Symmetric Group, Sn, of degree n” is formed.
The order of the group Sn is n!
It is non-Abelian for n ≥ 3

3.3  Cayley's Theorem
The symmetric Groups are important, particularly historically. They were the
first type of group to be studied as such, and originally “group” meant “group
of permutations”. Many of the properties of general finite groups were discovered
for the permutation groups in  the nineteenth century before the abstract nature of
groups was fully understood. In a certain sense, all finite groups are contained in
the symmetric groups, a result known as Cayley's Theorem.

Cayley's Theorem
Every finite group is isomorphic to a permutation group.

•   This remarkable result, shortly to be proven, suggests that only the symmetric
     groups need be studied. All else is within! However, with the order of the
     permutation group Sn being n! the groups involved quickly become daunting
     to work with. S9 for example, is of order 362,880.
•  Arthur Cayley (1821-1895) was a prolific British Mathematician who made
    wide ranging contributions to Pure Mathematics including Algebra, Analytic
    Geometry and the theory of Matrices and determinants. Aged 42 he became a
     professor at Cambridge University, a post that allowed him to give up his “day
     job” as a lawyer and focus whole heartedly on his passion for mathematics.

The book Arthur Cayley, by Tony Crilly (2005)



Proof of Cayley's Theorem

   g1, g2, g3,  ... ,  gn.Let G be a finite group with elements

With each element of G, associate a permutation of the n elements of G by
assigning to that element the permutation obtained from its row in the Cayley
table for the group. 
For example, let x and y be two elements in G, with the consequence (due to
closure) that xy is also an element in G.

The Cayley table will then be of the following form; 
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The permutation obtained from x is,

Px = (  )  g1   g2   g3   ...   gn

  x g1   x g2   x g3   ...   x gn

and from y is,

Py = (  )   g1   g2   g3   ...   gn

  y g1   y g2   y g3   ...   y gn

   Px � PyConsider the composite,

Px � Py = ( ) � (  )g1 g2 ... y t ... gn

x g1 x g2 ... x y t ... x gn

  g1 g2 ... t ... gn

y g1 y g2 ... y t ... y gn

= (  )g1 g2 ... t ... gn

x y g1 x y g2 ... xyt ... xy gn

   Px � Py t ∈ G  x y t ∈ G.The above is showing that maps each element  to 

  Pxy However, that is precisely what the permutation did in the Cayley table.

 ∴   Px � Py = Pxy



The claim now is that the set of constructed permutations forms a subgroup of
G which will be called P.
Checking the subgroup axioms hold (see 1.3 Subgroups):

   Px � Py = Pxy  Closure: The equation  shows that the composite of two of the

  constructed permutations is another of the constructed permutations.
 ∴ P is closed.

  e  G  PeIdentity:  The identity element of gives rise to the identity permutation

Pe = (  ) = (  )g1 g2 ... gn

e g1 e g2 ... e gn

 g1  g2  ...  gn 
 g1  g2  ...  gn 

   ∴ The subgroup P contains as identity, the identity of G, as required.

    Px � Py = Pxy   Pg− 1 Pg Inverses:  establishes that  is the inverse of  because

       •  Pg � Pg− 1 = Pg g− 1 = Pe

       •  Pg− 1 � Pg = P g− 1 g = Pe

     ∴ For each element of G that's in H, the corresponding inverse
          element from G is also in H,  as required.

  {Pg : g ∈ G}  Thus, the set of permutations forms a group.

   Px � Py = Pxy  Furthermore, the equation shows the constructed permutations

  combine in the same way as the corresponding original elements; the Cayley table

  gfor the constructed group is identical to the original Cayley table, but with 

Pg.  g → Pg replaced by The mapping is an isomorphism between the two groups.

  G ≅  H.That is 

This concludes the proof of Cayley's theorem.               ̧

                   
3.3  Constructing a Cycle Graph

Cycle Graph Construction Strategy
Start with a graph containing only the identity element as a single node.
1.   Pick an element not already in the graph.
2.  Compute the cyclic subgroup generated by that element and add the cycle
     to the graph, connecting to already existing nodes as needed
3.  If the graph contains a sub-cycle of the new cycle, delete the sub-cycle.
4.  Repeat steps 1 to 3 until all of the (finitely many) elements have a node.



3.4  Example
Construct a cycle graph from the following Cayley table which is for the
group of symmetries of a square, with r being a rotation of 90° about the
centre, and y, x, p and n being reflections in the y-axis, x-axis, y = x and
y =   respectively.− x
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Teaching video: http://www.NumberWonder.co.uk/v9110/3.mp4

[ 3 marks ]

http://www.NumberWonder.co.uk/v9110/3.mp4


3.5  Exercise
Marks Available: 40

Question 1
Construct a cycle graph from the following Cayley table which is for the
group of symmetries of a regular pentagon that was studied in Lecture 2.
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[ 3 marks ]



Question 2
This question considers the symmetries of a regular hexagon. The six vertices are
numbered from 1 to 6. The six lines of mirror symmetry are labelled x, p, q, y, m
and n and a rotation of 60° is denoted r, as shown in the diagram.

p

1

2

4

5

2

4

m

n

y

x r

3

6

3

5 6

q

1

( i ) Draw the cycle graph for the group of symmetries, H, of the regular
hexagon under the binary operation of composition of transformations.

[ 3 marks ]

( ii ) Complete the following table to show all the cyclic subgroups of H.

Subgroup Order Subgroup Order Subgroup Order

{e} 1 2 3

{e, x} 2 2 6

2 2 {e, x, p, q, y, m, n

2 2 r, r2, r3, r4, r5} 12

[ 3 marks ]



( iii ) For the symmetries of a regular hexagon, complete the following table
for each symmetry to show,
      •  it's order (the same as the order of the associated permutation)

      •  how it would be written in permutation cycle notation

      •  one way it could be written as a composition of transpositions

          (the composition symbol � may be omitted)

      •  the parity of the transpositions (whether odd or even)

Symmetry Order Cycle Notation Transpositions Parity

e 1 (1)(2)(3)(4)(5)(6) none even

r 6 (1 2 3 4 5 6) (1 6) (1 5) (1 4) (1 3) (1 2) odd

r2 3 (1 3 5) (2 4 6) (1 5) (1 3) (2 6) (2 4) even

r3

r4

r5

x 2 (2 6) (3 5) (2 6) (3 5) even

p

q

y

m 2 (1 5) (2 4) (1 5) (2 4) even

n

[ 7 marks ]
( iv ) Robin suspects that all the elements with even parity form a (non-cyclic)

subgroup of H. Construct the Cayley table for these elements and use it
to help determine if Robin's suspicion is correct or not.

[ 3 marks ]



( v ) State a standard fundamental group to which H is isomorphic.

[ 1 mark ]

( vi ) Prove that for any group G, the elements with even parity form a subgroup.
You may use the fact that,
•   even and odd permutations combine according to the parity table;

+ even odd

even even odd

odd odd even

[ 6 marks ]



Question 3
Consider the cyclic group p, of order p where p is prime.

( i ) Draw a cycle graph for p

[ 2 marks ]

( ii ) Explain why p has no proper subgroups.

[ 2 marks ]

Question 4

   p2Consider a cyclic group of order, where p is prime.

( i ) How many proper subgroups will this group have ?
Give a reason for your answer.

Hint : It may be helpful to
          first do this question

                        for a specific prime,
          say p = 11

[ 2 marks ]

( ii ) For each  subgroup found, list both the subgroup and its generator.
 

[ 2 marks ]



Question 5
Show that any cyclic group of even order has exactly one element of order 2

[ 3 marks ]

Question 6
Let G be a group, with identity element e, containing finite subgroups H and K.

   | H |   | K |    H ∩ K = {e}If and are coprime, show that

  
†

Assume that the intersection of two subgroups of a group is itself a subgroup

[ 3 marks ]

† For a proof see, for example, Groups and Symmetry by MA Armstrong, page 23
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