Year FM Further Pure Mathematics Examination Revision : Health Check N° 9

"Doctor, doctor, Will this ointment clear my spots ?" "I never make rash promises"

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

FM A-Level Examination Question from October 2021, Paper Core Pure, Q2 (MEI)

Find the gradient of the curve $y = 6 \arcsin (2x)$ at the point with x-coordinate $\frac{1}{4}$

Express the result in the form $m\sqrt{n}$, where *m* and *n* are integers.

FM A-Level Examination Question from October 2021, Paper Core Pure, Q14 (MEI) A curve has polar equation $r = a(\cos \theta + 2\sin \theta)$, where *a* is a positive

constant and $0 \leq \theta \leq \pi$

(**a**) Determine the polar coordinates of the point on the curve which is furthest from the pole.

[7 marks]

(**b**) (**i**) Show that the curve is a circle whose radius should be specified.

[6 marks]

(ii) Write down the polar coordinates of the centre of the circle.

[1 mark]

(i) Explain what it means for an integral to be improper.

[1 mark]

(ii) Identify two features of
$$\int_0^\infty \frac{1}{(x+1)\sqrt{x}} dx$$
 which make it improper.

[1 mark]

(iii) By differentiating $\arctan \sqrt{x}$, or otherwise, show that $\int_0^\infty \frac{1}{(x+1)\sqrt{x}} dx$ is convergent and find its exact value.

[5 marks]

FM A-Level Question from October 2020, Paper Core Pure 1, Q9 (OCR) You are given that the cubic equation $2x^3 + px^2 + qx - 3 = 0$, where *p* and *q* are real numbers, has a complex root $\alpha = 1 + i\sqrt{2}$

(**a**) Write down a second complex root, β

[1 mark]

(**b**) Determine the third root, γ

[2 marks]

(c) Find the value of p and the value of q

[2 marks]

(**d**) Show that if *n* is an integer then $\alpha^{n} + \beta^{n} + \gamma^{n} = 2 \times 3^{\frac{n}{2}} \times \cos n\theta + \frac{1}{2^{n}} \text{ where } \tan \theta = \sqrt{2}$

[4 marks]

FM AS-Level Examination Question from October 2020, Paper Pure Core, Q1 (OCR) **In this question you must show detailed reasoning.**

Use an algebraic method to find the square roots of (-77 - 36i)

[6 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk