Year FM Further Pure Mathematics Examination Revision : Health Check ${ }^{\circ} 9$

"Doctor, doctor, Will this ointment clear my spots?" "I never make rash promises"

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

FM A-Level Examination Question from October 2021, Paper Core Pure, Q2 (MEI)
Find the gradient of the curve $y=6 \arcsin (2 x)$ at the point with x-coordinate $\frac{1}{4}$
Express the result in the form $m \sqrt{n}$, where m and n are integers.

Question 2

FM A-Level Examination Question from October 2021, Paper Core Pure, Q14 (MEI) A curve has polar equation $r=a(\cos \theta+2 \sin \theta)$, where a is a positive constant and $0 \leqslant \theta \leqslant \pi$
(a) Determine the polar coordinates of the point on the curve which is furthest from the pole.
(b) (i) Show that the curve is a circle whose radius should be specified.
(ii) Write down the polar coordinates of the centre of the circle.

Question 3

(i) Explain what it means for an integral to be improper.

[1 mark]

(ii) Identify two features of $\int_{0}^{\infty} \frac{1}{(x+1) \sqrt{x}} d x$ which make it improper.
[1 mark]
(iii) By differentiating $\arctan \sqrt{x}$, or otherwise, show that $\int_{0}^{\infty} \frac{1}{(x+1) \sqrt{x}} d x$ is convergent and find its exact value.

Question 4

FM A-Level Question from October 2020, Paper Core Pure 1, Q9 (OCR)
You are given that the cubic equation $2 x^{3}+p x^{2}+q x-3=0$, where p and q are real numbers, has a complex root $\alpha=1+\mathrm{i} \sqrt{2}$
(a) Write down a second complex root, β
(b) Determine the third root, γ
[2 marks]
(c) Find the value of p and the value of q
[2 marks]
(d) Show that if n is an integer then
$\alpha^{n}+\beta^{n}+\gamma^{n}=2 \times 3^{\frac{n}{2}} \times \cos n \theta+\frac{1}{2^{n}}$ where $\tan \theta=\sqrt{2}$

Question 5

FM AS-Level Examination Question from October 2020, Paper Pure Core, Q1 (OCR) In this question you must show detailed reasoning.

Use an algebraic method to find the square roots of (-77-36i)

