Year FM Further Pure Mathematics Examination Revision : Health Check N° 8

"Doctor, doctor, I'm addicted to brake fluid" "What nonsense, you can stop anytime"

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Given a complex number z = a + bi, the conjugate of z, which is denoted z^* , is the complex number z = a - bi.

Show that
$$\frac{z}{z^*} = \left(\frac{a^2 - b^2}{a^2 + b^2}\right) + \left(\frac{2ab}{a^2 + b^2}\right)i$$

FM A-Level Examination Question from June 2021, Paper 1, Q6 (AQA)

(a) Show that the equation $(2z - z^*)^* = z^2$ has exactly four solutions. Find these solutions. (**b**) (**i**) Plot the four solutions to the equation in part (a) on the Argand diagram and join them together to form a quadrilateral with one line of symmetry.

[2 marks]

(**a**) Find the exact mean value of
$$f(x) = \frac{\sin x \cos x}{\cos 2x + 2}$$
 over the interval $\left[0, \frac{\pi}{2}\right]$

[4 marks]

Making use of the graph, explain the geometric significance of your part (a) answer.

[2 marks]

FM A-Level Examination Question from October 2021, Paper Core 1, Q1 (OCR)(a) Sketch on a single Argand diagram the loci given by,

(i)
$$|z - 1 + 2i| = 3$$

(ii) |z+1| = |z-2|

(**b**) Indicate, by shading, the region of the Argand diagram for which $|z - 1 + 2i| \le 3$ and $|z + 1| \le |z - 2|$

[2 marks]

(a) Use the substitution $x = \frac{a}{\sinh \theta}$, where *a* is a constant, to show that,

for
$$x > 0$$
, $a > 0$, $\int \frac{1}{x\sqrt{x^2 + a^2}} dx = -\frac{1}{a} \operatorname{arsinh}\left(\frac{a}{x}\right) + \operatorname{constant}$

[6 marks]

(**b**) Hence, or otherwise, find the exact value of
$$\int_{1}^{2} \frac{1}{x\sqrt{x^2+4}} dx$$

[4 marks]

The Cartesian equation of a curve is $(x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)$ Recast this equation in the polar form, $r = f(\theta)$

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk