Year FM Further Pure Mathematics Examination Revision : Health Check ${ }^{\circ} \mathbf{8}$

Heallh

"Doctor, doctor, I'm addicted to brake fluid" "What nonsense, you can stop anytime"

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Given a complex number $z=a+b \mathrm{i}$, the conjugate of z, which is denoted z^{*},
is the complex number $z=a-b \mathrm{i}$.
Show that $\frac{z}{z^{*}}=\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)+\left(\frac{2 a b}{a^{2}+b^{2}}\right) \mathrm{i}$

Question 2

FM A-Level Examination Question from June 2021, Paper 1, Q6 (AQA)
(a) Show that the equation $\left(2 z-z^{*}\right)^{*}=z^{2}$ has exactly four solutions. Find these solutions.
(b) (i) Plot the four solutions to the equation in part (a) on the Argand diagram and join them together to form a quadrilateral with one line of symmetry.

[2 marks]
(ii) Show that the area of this quadrilateral is $\frac{\sqrt{15}}{2}$ square units.

Question 3

(a) Find the exact mean value of $f(x)=\frac{\sin x \cos x}{\cos 2 x+2}$ over the interval $\left[0, \frac{\pi}{2}\right]$
(b) The graph is of the function $f(x)=\frac{\sin x \cos x}{\cos 2 x+2}$

Making use of the graph, explain the geometric significance of your part (a) answer.

Question 4

FM A-Level Examination Question from October 2021, Paper Core 1, Q1 (OCR)
(a) Sketch on a single Argand diagram the loci given by,
(i) $|z-1+2 \mathrm{i}|=3$
[2 marks]
(ii) $|z+1|=|z-2|$
[2 marks]
(b) Indicate, by shading, the region of the Argand diagram for which

$$
|z-1+2 \mathrm{i}| \leqslant 3 \text { and }|z+1| \leqslant|z-2|
$$

Question 5

(a) Use the substitution $x=\frac{a}{\sinh \theta}$, where a is a constant, to show that, for $x>0, a>0, \int \frac{1}{x \sqrt{x^{2}+a^{2}}} d x=-\frac{1}{a} \operatorname{arsinh}\left(\frac{a}{x}\right)+$ constant
(b) Hence, or otherwise, find the exact value of $\int_{1}^{2} \frac{1}{x \sqrt{x^{2}+4}} d x$

Question 6

The Cartesian equation of a curve is $\left(x^{2}+y^{2}-2 x\right)^{2}=4\left(x^{2}+y^{2}\right)$
Recast this equation in the polar form, $r=f(\theta)$

