Year FM Further Pure Mathematics Examination Revision : Health Check ${ }^{\circ} \mathbf{7}$

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Heallth</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Check</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Heallth |
| :---: |
| Check |</table-markdown></div>

Why did Count Dracula go to the doctor? He couldn't stop coffin!

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 42

Question 1

FM A-Level Examination Question from November 2021, Paper Core 2, Q1 (OCR)
Two matrices, \mathbf{A} and \mathbf{B} are given by,

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & -2 & -1 \\
2 & -3 & 1 \\
a & 1 & 1
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{rrr}
-6 & 3 & -4 \\
-1 & 6 & -4 \\
8 & -8 & -1
\end{array}\right) \text { where } a \text { is a constant. }
$$

Find the value of a for which $\mathbf{A B}=\mathbf{B A}$

Question 2

FM A-Level Examination Question from June 2021, Paper 2, Q5 (AQA)
The equation $z^{3}+2 z^{2}-5 z-3=0$ has roots α, β and γ
Find a cubic with roots $\frac{1}{2} \alpha-1, \frac{1}{2} \beta-1$ and $\frac{1}{2} \gamma-1$

Question 3

FM A-Level Examination Question from June 2017, Paper FP2, Q4 (Edexcel)

$$
y=\ln \left(\frac{1}{1-2 x}\right), \quad|x|<\frac{1}{2}
$$

(a) Find $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ and $\frac{d^{3} y}{d x^{3}}$
(b) Hence, or otherwise, find the series expansion of $\ln \left(\frac{1}{1-2 x}\right)$ about $x=0$, in ascending powers of x, up to and including the term in x^{3}. Give each coefficient in its simplest form.
(c) Use your expansion to find an approximate value for $\ln \left(\frac{3}{2}\right)$ giving your answer to 3 decimal places.

Question 4

FM AS-Level Examination Question from May 2019, Paper Core, Q4 (OCR)
In this question you must show detailed reasoning.
You are given that $f(z)=4 z^{4}-12 z^{3}+41 z^{2}-128 z+185$ and that $2+\mathrm{i}$
is a root of the equation $f(z)=0$
(a) Express $f(z)$ as the product of two quadratic factors with integer coefficiants.
(b) Solve $f(z)=0$

Two loci on an Argand diagram are defined by

$$
C_{1}=\left\{z:|z|=r_{1}\right\} \text { and } C_{2}=\left\{z:|z|=r_{2}\right\} \text { where } r_{1}>r_{2}
$$

You are given that two of the points representing the roots of $f(z)=0$ (which you worked out in part (b)) are on C_{1} and two are on C_{2}

Let R be the region on the Argand diagram between C_{1} and C_{2}
(c) Find the exact area of R
[4 marks]
(d) $\quad \omega$ is the sum of all the roots of $f(z)=0$

Determine whether or not the point on the Argand diagram which represents ω lies in R.

Question 5

Further Mathematics Examination Question from January 2012, Q7 (ii) (OCR)
It is given that x satisfies the equation $\operatorname{arsinh} x-\operatorname{arcosh} x=\ln 2$
(i) Use the logarithmic forms for $\operatorname{arsinh} x$ and $\operatorname{arcosh} x$ to show that,

$$
\sqrt{x^{2}+1}-2 \sqrt{x^{2}-1}=x
$$

(ii) Hence, by squaring this equation, find the exact value of x

Question 6

FM AS-Level Examination Question from May 2019, Paper Core, Q6 (OCR)
A transformation T is represented by the matrix \mathbf{T} where,

$$
\mathbf{T}=\left(\begin{array}{cc}
x^{2}+1 & -4 \\
3-2 x^{2} & x^{2}+5
\end{array}\right)
$$

A quadrilateral Q, whose area is 12 units, is transformed by T to Q^{\prime} Find the smallest possible value of the area of Q^{\prime}

