Year FM Further Pure Mathematics Examination Revision : Health Check ${ }^{\circ} 5$

Checelt $\bar{\square}$

A year ago the Doctor told me I was going deaf. I haven't heard from him since.

Any solution based entirely on graphical
or numerical methods is not acceptable
Marks Available : 30

Question 1

Find $\int \frac{1}{4+3 x^{2}} d x$ giving your answer in the form $A \arctan (B x)+c$ where c is an arbitrary constant and A and B are constants to be found.

Question 2

The graph is of the function $f(x)=4 \cosh x-\frac{1}{4} \cosh (2 x), \quad x \in \mathbb{R}$
Determine the exact x coordinates of the stationary points.
Your answer should be in terms of natural logarithms.

Question 3

The three dimensional graph below is of the three planes,

$$
\begin{array}{rlrl}
\text { In purple : } & & x+z & =4 \\
\text { In green : } & & 2 x+z & =3 \\
\text { In blue : } & z & =5
\end{array}
$$

The three planes have a common line of intersection.
(i) What is this type of configuration of planes called ?
(ii) Find a vector equation of the line of intersection in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$

Question 4

The circle C_{1} has equation $x^{2}+y^{2}=81$
The circle C_{2} has centre (10,0) and radius 3
(a) Write down the equation of C_{2}

The line $A B P$ is a tangent to C_{1} at A and is also a tangent to C_{2} at B It cuts the x-axis at the point P
(b) By considering similar triangles, show that the coordinates of P are (15, 0)
(c) A line through P has gradient m.
Write down, in terms of m, the equation of this line.
[1 mark]

This line cuts C_{1} in two points.
(d) Show that the x-coordinates of these two points satisfy the equation,

$$
x^{2}\left(1+m^{2}\right)-30 m^{2} x+\left(225 m^{2}-81\right)=0
$$

(e) Hence determine the coordinates of the point A

Question 5

By solving a suitable matrix equation with the aid of your calculator, find the single point at which the following three planes intersect,

$$
\begin{aligned}
x-3 y-4 z= & 3 \\
6 x+5 y-7 z= & 30 \\
x+4 y+6 z= & -3
\end{aligned}
$$

