\section*{| Health |
| :--- |
| Chech |}

# I told the Doctor I didn't want brain surgery. He changed my mind! 

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 32

## Question 1

Find the value of $x$ for which

$$
2 \tanh x-1=0
$$

giving your answer in terms of a natural logarithm.

## Question 2

$$
y=\sin x \cosh x
$$

(i) Show that $\frac{d^{4} y}{d x^{4}}=-4 y$
(ii) Hence find the first three non-zero terms of the Maclaurin series for $y$. Give each coefficient in its simplest form.

## Question 3

A logo is designed which consists of two overlapping closed curves.
The polar equations of these curves are,

$$
\begin{array}{ll}
r=a(3+2 \cos \theta), & 0 \leqslant \theta \leqslant 2 \pi \\
r=a(5-2 \cos \theta), & 0 \leqslant \theta \leqslant 2 \pi
\end{array}
$$

Given below is a sketch (not to scale) of these two curves.

(i) Write down the polar coordinates of the points $A$ and $B$ where the curves meet the initial line,
( ii ) Find the polar coordinates of the points $C$ and $D$ where the curves meet.
( iii ) Show that the area of the overlapping region, which is shaded in the diagram, is $\frac{a^{2}}{3}(49 \pi-48 \sqrt{3})$

## Question 4

A three dimensional graph plotter is used to plot the planes with equations,

$$
\begin{aligned}
x+y-z & =2 & & \text { Equation 1 } \\
3 x-y+2 z & =5 & & \text { Equation 2 } \\
5 x+y & =9 & & \text { Equation 3 }
\end{aligned}
$$

From the plot it looks as if, rather than intersecting at a common point, all three planes intersect along a line. This configuration of planes is called a sheaf.

(i) Consider the three planes written in matrix form,

$$
\left(\begin{array}{rrr}
1 & 1 & -1 \\
3 & -1 & 2 \\
5 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
9
\end{array}\right)
$$

Show that the $3 \times 3$ matrix in this equation has a determinant of zero.
(ii) A determinant of zero means no inverse to the $3 \times 3$ matrix exists, The matrix equation cannot be solved thus confirming that there is no unique point of intersection of all three planes.

The original equations were labelled Equation 1, Equation 2 and Equation 3. Show that, if $z$ is eliminated by combining Equation 1 and Equation 2, then Equation 3 is obtained.

This shows that all three planes intersect in the line.
[ 2 marks ]
(iii) Show that the points ( $0,9,7$ ) and ( $1,4,3$ ) are on all three planes and hence obtain the vector equation of the line of intersection in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$

