Year FM Further Pure Mathematics Examination Revision : Health Check $\mathbf{N}^{\circ} 3$

The Doctor will see you now

Any solution based entirely on graphical

or numerical methods is not acceptable
Marks Available : 30

Question 1

By considering $\left(z+\frac{1}{z}\right)^{3}$ where $z=\cos \theta+\mathrm{i} \sin \theta$, show that,

$$
\cos ^{3} \theta=\frac{1}{4}(\cos 3 \theta+3 \cos \theta)
$$

Question 2

(i) Use the substitution $x=a \tan \theta$ to show that,

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c
$$

(This "quotable without proof" result is given in the examination formula booklet, but, as here, you may be asked to prove it)
(ii) Given that $f(x)=\frac{8 x-3}{4+x^{2}}$ find $\int f(x) d x$, presenting your answer in the form $A \ln \left(x^{2}+4\right)+B \arctan \left(\frac{x}{2}\right)+c$ where c is an arbitrary constant and A and B are constants to be found.

Question 3

$\mathbf{A}=\left(\begin{array}{rrr}2 p & p & 2 \\ 3 & 0 & 0 \\ -1 & 1 & -1\end{array}\right)$ where p is a real constant.
Given that \mathbf{A} is non-singular, find \mathbf{A}^{-1} in terms of p.

Question 4

Prove by induction that for all positive integers $n, 2^{6 n}+3^{2 n-2}$ is divisible by 5

Question 5

The line l_{1} has equation $\frac{x-2}{2}=\frac{y-4}{(-2)}=\frac{z+6}{1}$
The plane Π has equation $2 x-3 y+z=8$
The line l_{2} is the reflection of line l_{1} in the plane Π.
Find a vector equation of the line l_{2}

