Year FM Further Pure Mathematics Examination Revision : Health Check ${ }^{\circ} \mathbf{2}$

Fortify Your Maths

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

The matrix $\mathbf{A}=\left(\begin{array}{rrr}3 & k & 0 \\ -2 & 1 & 2 \\ 5 & 0 & k+3\end{array}\right)$, where k is a constant
(i) Find $\operatorname{det} \mathbf{A}$ in terms of k

Given that \mathbf{A} is singular,
(ii) find the possible values of k

Question 2

$$
f(z)=z^{3}+3 z^{2}+k z+48, k \in \mathbb{R}
$$

Given that $f(4 i)=0$
(a) find the value of k
(b) find and list all the roots of the equation

Question 3

Show that $\frac{\cos 2 x+\mathrm{i} \sin 2 x}{\cos 9 x-\mathrm{i} \sin 9 x}$ can be expressed in the form $\cos n x+\mathrm{i} \sin n x$, where n is an integer to be found

Question 4

Given that $\sum_{r=1}^{n} r^{2}(r-1)=\frac{1}{12} n(n+1)\left(p n^{2}+q n+r\right)$
(a) find the values of p, q and r
(b) Hence evaluate $\sum_{r=50}^{100} r^{2}(r-1)$

Question 5

The diagram shows parts of the curves with equations,

$$
y=12-x^{2} \quad \text { (in red) } \quad \text { and } \quad y=8-0.2 x^{2} \quad \text { (in gold) }
$$

A jeweller models a gold ring as the volume of revolution formed when the area bounded by these two curves is rotated through 360° about the x-axis
(i) Given that the dimensions on the diagram are in millimetres, state the maximum outer diameter of the ring

[1 mark]

The density of gold is $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$
(ii) Find the mass of the ring according to this model, giving your answer in grams to 1 decimal place.
(iii) Give one reason why the actual mass of the ring is likely to be different from your answer to part (ii).

