Year FM Further Pure Mathematics Examination Revision : Health Check N° 10

"Doctor, doctor, I keep seeing into the future" "When did this start ?" "Next Tuesday"

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

The line *L* has equation $r = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -2 \\ 5 \end{pmatrix}$

Identify which one of the following lines is perpendicular to L and prove your claim.

$$r_{1} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} + \mu_{1} \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} \qquad r_{2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu_{2} \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \qquad r_{3} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \mu_{3} \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$$

Complex Numbers Division Rule

For any two complex numbers z_1 and z_2

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|} \quad \text{and} \quad \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$$

This result may be quoted in examinations; worth knowing !

(i) Prove this result by by letting
$$\bullet z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$$

 $\bullet z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$

and working out $\frac{z_1}{z_2}$

[5 marks]

(ii) If
$$z_1 = 1 - \sqrt{3}$$
 i and $z_2 = \sqrt{3} + i$ determine,
(a) $arg(z_1)$

$$[1 mark]$$

(**b**) $arg(z_2)$

[1 mark]

$$(\mathbf{c}) \quad arg\left(\frac{z_1}{z_2}\right)$$

[1 mark]

(i) Use the facts that $\cosh x = \frac{e^x + e^{-x}}{2}$ and $\sinh x = \frac{e^x - e^{-x}}{2}$ to prove that $\tanh x = \frac{e^{2x} - 1}{e^{2x} + 1}$

[3 marks]

(ii) As *x* becomes large and positive, what value does *tanh x* tend towards ? Justify your answer.

[2 marks]

(iii) As *x* becomes large and negative, what value does *tanh x* tend towards ? Justify your answer.

[2 marks]

(iv) Hence, sketch the graph of y = tanh x

[2 marks]

(v) Given that $3 \sinh x = p \cosh x$ has real solutions, determine the range of possible values for p

[2 marks]

The graph is a Wolfram AlphaTM plot of the polar equation

Use differentiation as part of a proof that shows that there could be a vertical tangent to the curve that touches the curve at the point with polar coordinates $\left(\frac{3}{2}, \frac{\pi}{6}\right)$

(i) Given that $y = \arccos x$ over the interval $-1 \le x \le 1$, show that,

$$\frac{dy}{dx} = -\frac{1}{\sqrt{1 - x^2}} - 1 < x < 1$$

If your solution involves the taking of square roots, explain carefully why you select the negative option and discard the positive, if appropriate.

[4 marks]

(ii)
$$f(x) = \arccos(e^x)$$
 $x \le 0$
(a) Explain why domain restriction $x \le 0$ is necessary.

[2 marks]

(**b**) Prove that f(x) has no stationary points.

[2 marks]

(i) Express as partial fractions;
$$\frac{4x^2 + 3x + 14}{(x+2)(x^2+4)}$$

[3 marks]

(ii) Hence find the exact value of
$$\int_0^1 \frac{4x^2 + 3x + 14}{(x+2)(x^2+4)} dx$$
Simplify your answer.

[5 marks]

After you have done this question you may like to compare the method this old examination question guides you towards with that used in question 2.

 $z_1 = 4 + 2i$ $z_2 = -3 + i$

(**i**) Find the exact value of $|z_1 - z_2|$

[2 marks]

Given that $w = \frac{z_1}{z_2}$

(ii) express w in the form a + bi, where $a, b \in \mathbb{R}$

[2 marks]

(**iii**) find *arg w*, giving your answer in radians.

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk