Year FM Further Pure Mathematics Examination Revision : Health Check $\mathbf{N}^{\circ} \mathbf{1 0}$

Checelt $\bar{\square}$

"Doctor, doctor, I keep seeing into the future" "When did this start ?"

"Next Tuesday"
Any solution based entirely on graphical
or numerical methods is not acceptable
Marks Available : 50

Question 1

The line L has equation $r=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{r}-1 \\ -2 \\ 5\end{array}\right)$
Identify which one of the following lines is perpendicular to L and prove your claim.
$r_{1}=\left(\begin{array}{r}2 \\ -3 \\ 4\end{array}\right)+\mu_{1}\left(\begin{array}{r}1 \\ 2 \\ -5\end{array}\right) \quad r_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\mu_{2}\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right) \quad r_{3}=\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right)+\mu_{3}\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right)$

Question 2

Complex Numbers Division Rule

For any two complex numbers z_{1} and z_{2}

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad \text { and } \quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
$$

This result may be quoted in examinations; worth knowing !
(i) Prove this result by by letting $\bullet z_{1}=r_{1}\left(\cos \theta_{1}+\mathrm{i} \sin \theta_{1}\right)$

- $z_{2}=r_{2}\left(\cos \theta_{2}+\mathrm{i} \sin \theta_{2}\right)$
and working out $\frac{z_{1}}{z_{2}}$
(ii) If $z_{1}=1-\sqrt{3} \mathrm{i}$ and $z_{2}=\sqrt{3}+\mathrm{i}$ determine, (a) $\arg \left(z_{1}\right)$
(b) $\arg \left(z_{2}\right)$
(c) $\quad \arg \left(\frac{z_{1}}{z_{2}}\right)$

Question 3

(i) Use the facts that $\cosh x=\frac{e^{x}+e^{-x}}{2}$ and $\sinh x=\frac{e^{x}-e^{-x}}{2}$ to prove that $\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}$
(ii) As x becomes large and positive, what value does $\tanh x$ tend towards? Justify your answer.
(iii) As x becomes large and negative, what value does $\tanh x$ tend towards? Justify your answer.
(iv) Hence, sketch the graph of $y=\tanh x$
(v) Given that $3 \sinh x=p \cosh x$ has real solutions, determine the range of possible values for p

Question 4

The graph is a Wolfram Alpha ${ }^{\text {TM }}$ plot of the polar equation

> | $r=1+\sin \theta$ over the interval | $-\pi \leqslant \theta \leqslant \pi$ |
| :--- | :--- |
| polar plot | $r=1+\sin (\theta)$ |
| $\theta=-\pi$ to π | |

Polar plot

Use differentiation as part of a proof that shows that there could be a vertical tangent to the curve that touches the curve at the point with polar coordinates $\left(\frac{3}{2}, \frac{\pi}{6}\right)$

Question 5

(i) Given that $y=\arccos x$ over the interval $-1 \leqslant x \leqslant 1$, show that,

$$
\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}} \quad-1<x<1
$$

If your solution involves the taking of square roots, explain carefully why you select the negative option and discard the positive, if appropriate.
(ii) $\quad f(x)=\arccos \left(e^{x}\right) \quad x \leqslant 0$
(a) Explain why domain restriction $x \leqslant 0$ is necessary.
(b) Prove that $f(x)$ has no stationary points.

Question 6

(i) Express as partial fractions; $\frac{4 x^{2}+3 x+14}{(x+2)\left(x^{2}+4\right)}$
(ii) Hence find the exact value of $\int_{0}^{1} \frac{4 x^{2}+3 x+14}{(x+2)\left(x^{2}+4\right)} d x$ Simplify your answer.

Question 7

After you have done this question you may like to compare the method this old examination question guides you towards with that used in question 2.

$$
z_{1}=4+2 \mathrm{i} \quad z_{2}=-3+\mathrm{i}
$$

(i) Find the exact value of $\left|z_{1}-z_{2}\right|$

Given that $w=\frac{z_{1}}{z_{2}}$
(ii) express w in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{R}$
(iii) find $\arg w$, giving your answer in radians.

