## Year FM Further Pure Mathematics Examination Revision : Health Check $\mathbf{N}^{\circ} \mathbf{1}$

\section*{| Helath |
| :---: |
| Chect |}

## Why did the mattress go to the doctor ? It had spring fever

Any solution based entirely on graphical<br>or numerical methods is not acceptable<br>Marks Available : 25

## Question 1

(i) A famous trigonometric identity is that, $\sin 3 x=3 \sin x-4 \sin ^{3} x$ By use of Osborn's Rule, or otherwise, write down the similar identity for the hyperbolic function $\sinh 3 x$
[ 1 mark ]
(ii) Using the definition of $\sinh x$ in terms of exponentials prove that your part (i) identity is correct.

## Question 2


(i) With the aid of the diagram expand the brackets of $(\alpha+\beta+\gamma)^{2}$

The roots of the equation $4 x^{3}-12 x^{2}-x+3=0$ are $\alpha, \beta$ and $\gamma$ Without solving the equation, write down the values of,
(ii) $\quad \alpha+\beta+\gamma$
( iii ) $\alpha \beta+\beta \gamma+\gamma \alpha$
(iv) $\alpha \beta \gamma$
[ 1 mark ]
( v ) $\quad \alpha^{2}+\beta^{2}+\gamma^{2}$

## Question 3

Javier is revising Volumes of Revolution, and reads in his notes that;

## Parametric Volumes of Revolution

The volume of revolution formed when the parametric curve with equations

$$
x=f(\theta) \text { and } y=g(\theta)
$$

is rotated through $2 \pi$ radians about the $x$-axis between $x=a$ and $x=b$ is,

$$
V=\pi \int_{x=a}^{x=b} y^{2} d x=\pi \int_{\theta=q}^{\theta=p} y^{2} \frac{d x}{d \theta} d \theta
$$

The same curve rotated $2 \pi$ radians about the $y$-axis between $y=a$ and $y=b$ is,

$$
V=\pi \int_{y=a}^{y=b} x^{2} d y=\pi \int_{\theta=q}^{\theta=p} x^{2} \frac{d y}{d \theta} d \theta
$$

The curve $C$, graphed below, has the parametric equations,

$$
x=\sin ^{4} \theta \sqrt{\cos \theta}, \quad y=\cos \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}
$$



The finite region $R$ bounded by the curve and the $y$-axis is rotated through $2 \pi$ radians about the $y$-axis. Find the volume of the solid of revolution formed.

## Question 4

( a ) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that,

$$
\sum_{r=1}^{n}\left(r^{2}-r-1\right)=\frac{1}{3} n(n-2)(n+2)
$$

for all positive integers $n$
(b) Hence calculate $\sum_{r=10}^{40}\left(r^{2}-r-1\right)$

## Question 5

Further AS-Level Examination Question from June 2018, Paper 1, Q16 (AQA)
Two matrices $\mathbf{A}$ and $\mathbf{B}$ satisfy the equation $\mathbf{A B}=\mathbf{I}+2 \mathbf{A}$ where $\mathbf{I}$ is the identity
matrix and $\mathbf{B}=\left(\begin{array}{cc}3 & -2 \\ -4 & 8\end{array}\right)$
Find $\mathbf{A}$
[ 3 marks ]

