Further A-Level Pure Mathematics, Core 2 Hyperbolic Functions

8.1 Integration (Chain Rule Backwards)

In principle, given we've already[†] looked at differentiation questions, tackling an exercise on integration is just a case of using the following, previously supplied, table backwards, and remembering that if it's an indefinite integral (one without limits) to put in the constant of integration, c.

f(x)	f'(x)	In Formula Book ?
sinh x	cosh x	Yes
cosh x	sinh x	Yes
tanh x	sech ² x	Yes
arsinh x	$\frac{1}{\sqrt{x^2+1}}$	Yes
arcosh x	$\frac{1}{\sqrt{x^2 - 1}} x > 1$	Yes
artanh x	$\frac{1}{1-x^2} x < 1$	Yes

As with any non-trivial integration, always scan straight away for a possible "Chain Rule Backwards" before reaching for the much bigger weapons in the armoury; Integration by Substitution and Integration by Parts.

8.2 Example

Find $\int \frac{2+5x}{\sqrt{x^2+1}} dx$

Teaching Video : http://www.NumberWonder.co.uk/v9102/8.mp4

[6 marks]

† Hyperbolic Functions, Lesson 6

8.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Integrate the following with respect to x,

(**i**) sinh(5x) (**ii**) $\frac{1}{cosh^2(4x)}$

[2, 3 marks]

Question 2

Marvin is thinking of using integration by parts twice to find the following integral,

$$\int x^2 \cosh\left(x^3 + 4\right) dx$$

but Giles points out that it can far more easily be done as a "chain rule backwards". Following Giles' advice, carry out the integration.

[2 marks]

Question 3

By setting up a "chain rule backwards" find,

(i)
$$\int \sinh(5x) \cosh^6(5x) dx$$

(ii)
$$\int \frac{\sinh(5x)}{\cosh^6(5x)} dx$$

[4 marks]

Question 4

Frederic wishes to integrate the *tanh x* function and has begun by setting up a "chain rule backwards".

(i) Complete Fredric's solution,

$$\int tanh x \, dx = \int \frac{\sinh x}{\cosh x} \, dx$$
$$= \int \sinh x \left(\cosh x\right)^{-1} \, dx$$

[2 marks]

(ii) Justify why no modulus signs are needed in the final result.

[1 mark]

Question 5

(i) Use the approach outlined in question 4 to find $\int \cot k x \, dx$

[2 marks]

(ii) Are modulus signs are needed in the final result ?

[1 mark]

Question 6

Find the exact value of $\int_0^{\sqrt{2}} \frac{6}{\sqrt{1+4x^2}} dx$

[5 marks]

Question 7

The graph is of the function $f(x) = \frac{1+x}{\sqrt{x^2+1}}$ (in red) along with the vertical line (in gold) with equation $x = \sqrt{3}$. Show that the exact value of the area bounded by this vertical line, f(x), and the *x*-axis is,

$$ln((\sqrt{3} + 2)(\sqrt{2} + 1)) + 2 - \sqrt{2}$$

The techniques of example 8.2 will be useful !

Question 8

By replacing the $\cosh x$ function with exponentials, find $\int_0^{\ln 3} e^x \cosh(2x) dx$

[4 marks]

Question 9

FM A-Level Examination Question from June 2014, Paper FP3, Q3(b) (Edexcel) Using calculus, find the exact value of $\int_0^1 e^{2x} \sinh x \, dx$

Question 10 FM A-Level Examination Question from June 2013, Paper FP3, Q7 (Edexcel)

The curves shown are $y = 6 \cosh x$ (red) and $y = 9 - 2 \sinh x$ (gold).

(a) Using the definitions of sinh x and cosh x in terms of e^x , find exact values for the x-coordinate of the two points where the curves intersect.

The finite region between the two curves is shown shaded.

(**b**) Using calculus, find the area of the shaded region, giving your answer in the form $a \ln b + c$, where a, b and c are integers.

[6 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk