Lesson 7

Further A-Level Pure Mathematics, Core 2
 Hyperbolic Functions

$7.1 \operatorname{artanh} x$

Like $\sinh x$, the function $\tanh x$ is one-to-one on an unrestricted domain although, unlike $\sinh x$ it has horizontal asymptotes at $y= \pm 1$. Like any one-toone function, it has an inverse that, graphically, is a reflection in $y=x$.
The inverse of $\tanh x$ is called $\operatorname{artanh} x$.

Like $\sinh x$ and $\cosh x$, the $\tanh x$ function is defined in terms of exponentials, and its inverse, artanh x, involves logarithms.

The Inverse Of $\tanh x: \operatorname{artanh} x$

$$
\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \quad x \in \mathbb{R},|x|<1
$$

A proof of this is written out on the next page.
An excellent video from Exam Solutions talks through the proof

7.2 The Proof

$$
\begin{aligned}
y & =\operatorname{artanh} x \\
\therefore x & =\tanh y \\
& =\frac{\sinh y}{\cosh y} \\
& =\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}} \times \frac{e^{y}}{e^{y}} \\
& =\frac{\left(e^{y}\right)^{2}-1}{\left(e^{y}\right)^{2}+1} \\
x\left(e^{y}\right)^{2}+x & =\left(e^{y}\right)^{2}-1 \\
1+x & =\left(e^{y}\right)^{2}-x\left(e^{y}\right)^{2} \\
1+x & =\left(e^{y}\right)^{2}(1-x) \\
e^{y} & = \pm \sqrt{\frac{1+x}{1-x}} \\
\text { Now, since } e^{y}>0, e^{y} & =\sqrt{\frac{1+x}{1-x}} \\
& =\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} \\
y & =\ln \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} \\
\text { That is, artanh } x & =\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

The domain of the inverse function is the range of the original function

$$
\text { That is } x \in \mathbb{R},|x|<1
$$

7.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 35

Question 1

Further A-Level Examination Question from June 2018, FP3, Q1 (Edexcel) Solve the equation

$$
15 \operatorname{sech}^{2} x+7 \tanh x=13
$$

Give your answers in terms of simplified natural logarithms

Question 2

Further A-Level Examination Question from June 2009, FP3, Q1 (Edexcel)
Solve the equation

$$
7 \operatorname{sech} x-\tanh x=5
$$

Give your answers in the form $\ln a$ where a is a rational number

Question 3

Find the equation of the tangent at the point where $x=\frac{12}{13}$ on the curve with equation $y=\operatorname{artanh} x$

Question 4

Further A-Level Examination Question from June 2006, FP2, Q5 (Edexcel)
The curve with equation

$$
y=-x+\tanh (4 x) \quad x \geqslant 0
$$

has a maximum turning point A
(a) Find, in exact logarithmic form, the x-coordinate of A
(b) Show that the y-coordinate of A is $\frac{1}{4}\{2 \sqrt{3}-\ln (2+\sqrt{3})\}$

Question 5

Given that,

$$
\operatorname{artanh} x+\operatorname{artanh} y=\ln \sqrt{3}
$$

prove that

$$
y=\frac{2 x-1}{x-2}
$$

Question 6

Further A-Level Examination Question from June 2008, FP2, Q1 (Edexcel)
Show that $\quad \frac{d}{d x}[\ln (\tanh x)]=2 \operatorname{csch}(2 x) \quad x>0$

Question 7

Further A-Level Examination Question from June 2004, P5, Q1(b) (Edexcel)
Solve $\operatorname{csch} x-2 \operatorname{coth} x=2$ giving your answer in the form $k \ln a$ where k and a are integers

