Further A-Level Pure Mathematics, Core 2 Hyperbolic Functions

6.1 Differentiation

The hyperbolic functions and their inverse functions are differentiable. As no new ideas are involved this provides a welcome opportunity to refresh the various differentiation techniques of A-Level and Further A-Level mathematics.

f(x)	f'(x)	In Formula Book ?
sinh x	cosh x	Yes
cosh x	sinh x	Yes
tanh x	sech ² x	Yes
arsinh x	$\frac{1}{\sqrt{x^2+1}}$	Yes
arcosh x	$\frac{1}{\sqrt{x^2 - 1}} x > 1$	Yes
artanh x	$\frac{1}{1-x^2} x < 1$	Yes

6.2 Table of standard derivatives (Hyperbolic Functions)

6.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Differentiate with respect to *x*,

(i)
$$y = sinh(5x)$$

[1 mark]

(ii)
$$y = tanh\left(\frac{x}{3}\right)$$

[1 mark]

(iii) y = arcosh(2x)

[1 mark]

$$(iv) \quad y = arsinh\left(\frac{x}{3}\right)$$

[2 mark]

Question 2

If $y = a \cosh(nx) + b \sinh(nx)$ where a and b are constants, prove that,

$$\frac{d^2y}{dx^2} = n^2 y$$

[4 marks]

Question 3

Given that $y = (arcosh x)^2$ prove that

$$\left(x^2 - 1\right) \left(\frac{dy}{dx}\right)^2 = 4y$$

[5 marks]

Question 4

Differentiate with respect to *x*,

(i) y = sinh(2x) cosh(3x)

[2 marks]

(ii)
$$y = \frac{\cosh x}{4x}$$

[2 marks]

(iii)
$$y = x^2 \operatorname{arcosh} x$$

[2 marks]

Question 5

Further A-Level Examination Question from June 2012, FP3, Q5(a) (Edexcel) Differentiate $y = x \operatorname{arsinh}(2x)$ with respect to x

[3 marks]

Question 6

Differentiate with respect to *x*,

$$y = sech(2x)$$

[3 marks]

Question 7

Further A-Level Examination Question from June 2014, FP3, Q5 (Edexcel) Given that $y = artanh\left(\frac{x}{\sqrt{1+x^2}}\right)$ show that $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk