6.1 Differentiation

The hyperbolic functions and their inverse functions are differentiable. As no new ideas are involved this provides a welcome opportunity to refresh the various differentiation techniques of A-Level and Further A-Level mathematics.

6.2 Table of standard derivatives (Hyperbolic Functions)

$f(x)$	$f^{\prime}(x)$	In Formula Book ?
$\sinh x$	$\cosh x$	Yes
$\cosh x$	$\sinh x$	Yes
$\tanh x$	$\operatorname{sech}^{2} x$	Yes
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{x^{2}+1}}$	Yes
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^{2}-1}} \quad x>1$	Yes
$\operatorname{artanh} x$	$\frac{1}{1-x^{2}} \quad\|x\|<1$	Yes

6.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Differentiate with respect to x,
(i) $y=\sinh (5 x)$
(ii) $y=\tanh \left(\frac{x}{3}\right)$
(iii) $y=\operatorname{arcosh}(2 x)$
(iv) $y=\operatorname{arsinh}\left(\frac{x}{3}\right)$

Question 2

If $y=a \cosh (n x)+b \sinh (n x)$ where a and b are constants, prove that,

$$
\frac{d^{2} y}{d x^{2}}=n^{2} y
$$

Question 3

Given that $y=(\operatorname{arcosh} x)^{2}$ prove that

$$
\left(x^{2}-1\right)\left(\frac{d y}{d x}\right)^{2}=4 y
$$

Question 4

Differentiate with respect to x,
(i) $y=\sinh (2 x) \cosh (3 x)$
(ii) $y=\frac{\cosh x}{4 x}$
(iii) $y=x^{2} \operatorname{arcosh} x$
[2 marks]

Question 5

Further A-Level Examination Question from June 2012, FP3, Q5(a) (Edexcel)
Differentiate $y=x \operatorname{arsinh}(2 x)$ with respect to x

Question 6

Differentiate with respect to x,

$$
y=\operatorname{sech}(2 x)
$$

[3 marks]

Question 7

Further A-Level Examination Question from June 2014, FP3, Q5 (Edexcel)
Given that $y=\operatorname{artanh}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$ show that $\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$

