Lesson 5

Further A-Level Pure Mathematics, Core 2
 Hyperbolic Functions

$5.1 \operatorname{arcosh} x$

Before the inverse of the cosh function can be found, the domain must be restricted to obtain a one-to-one function. On the graph below the curve $y=\cosh x$ is coloured green and red, the green part being excluded by the restriction on the domain $x \geqslant 0$. The red part is then reflected in the line $y=x$ to obtain $y=\operatorname{arcosh} x$, coloured gold.

The Inverse Of $\cosh x: \operatorname{arcosh} x$

$$
\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right) \quad x \in \mathbb{R}, x \geqslant 1
$$

A proof is on the next page and talked through in the teaching video from Exam Solutions. It's similar to the arsinh proof but with a few extra technicalities.

Teaching Video: http://www.NumberWonder.co.uk/v9102/5.mp4

5.2 The Proof

$$
\begin{aligned}
y & =\operatorname{arcosh} x \\
\therefore x & =\cosh y \\
& =\frac{e^{y}+e^{-y}}{2} \quad \text { From the definition of cosh } \\
2 x & =e^{y}+e^{-y} \\
2 x e^{y} & =\left(e^{y}\right)^{2}+1 \quad \text { From multiplying through by } e^{y} \\
\left(e^{y}\right)^{2}-2 x\left(e^{y}\right)+1 & =0 \quad \text { Which is a "quadratic in disguise" } \\
e^{y} & =\frac{2 x \pm \sqrt{(-2 x)^{2}-4(1)(1)}}{2(1)} \\
& =\frac{2 x \pm \sqrt{4 x^{2}-4}}{2} \\
& =\frac{2 x \pm \sqrt{4} \sqrt{x^{2}-1}}{2} \\
& =x \pm \sqrt{x^{2}-1} \\
y & =\ln \left(x \pm \sqrt{x^{2}-1}\right)
\end{aligned}
$$

Now, as the arcosh function is one-to-one only one of these two possibilities can apply. The one to select, corresponding to the gold curve that in turn came
from the red half of the cosh curve is the following,

$$
\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right) \quad x \in \mathbb{R}, x \geqslant 1
$$

(The other solution would correspond to the inverse of the green half of the \cosh curve, and would be a reflection of the gold curve in the x-axis)

5.3 Example

(i) Determine the exact value of $\operatorname{arcosh}(4)$
(ii) Solve, to three decimal places, $\cosh w=2$

Solution :
(i) $\operatorname{arcosh}(4)=\ln (4+\sqrt{15})$

About 2.06
(ii) $\quad w=\operatorname{arcosh}(2) \quad$ i.e. $x=2$
$=\ln \left(x \pm \sqrt{x^{2}-1}\right)$
$=\ln (2 \pm \sqrt{3})$
$= \pm 1.316$
This example is also covered in the Exam Solutions teaching video.

5.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Express each of the following as a natural logarithm,
(i) $\operatorname{arcosh}(3)$
(ii) $\operatorname{arcosh}(\sqrt{3})$
[1 mark]
(iii) $\operatorname{arcosh}(3 \sqrt{2})$
[2 marks]

Question 2

Find the exact value of $\operatorname{arcosh}\left(\frac{13}{5}\right)$ in as simple a form as possible

Question 3

Solve the equation $\cosh w=12$ giving both solutions to 3 decimal places

Question 4

Further A-Level Examination Question from June 2017, FP3, Q3 (Edexcel)
(a) Using the definitions for $\cosh x$ in terms of exponentials, show that

$$
\cosh 2 x=2 \cosh ^{2} x-1
$$

(b) Find the exact values of x for which

$$
29 \cosh x-3 \cosh 2 x=38
$$

giving your answers in terms of natural logarithms

Question 5

Further A-Level Examination Question from June 2008, FP2, Q2 (Edexcel)
Find the values of x for which

$$
8 \cosh x-4 \sinh x=13
$$

giving your answers as natural logarithms.

Question 6

Further A-Level Examination Question from June 2004, P5. Q1(b) (Edexcel)
Solve,

$$
\operatorname{csch} x-2 \operatorname{coth} x=2
$$

giving your answer in the form $k \ln a$ where k and a are integers

