Lesson 5

Further A-Level Pure Mathematics, Core 2 Hyperbolic Functions

5.1 arcosh x

Before the inverse of the *cosh* function can be found, the domain must be restricted to obtain a one-to-one function. On the graph below the curve $y = \cosh x$ is coloured green and red, the green part being excluded by the restriction on the domain $x \ge 0$. The red part is then reflected in the line y = x to obtain $y = \operatorname{arcosh} x$, coloured gold.

A proof is on the next page and talked through in the teaching video from *Exam Solutions*. It's similar to the *arsinh* proof but with a few extra technicalities.

Teaching Video: <u>http://www.NumberWonder.co.uk/v9102/5.mp4</u>

5.2 The Proof

$y = \operatorname{arcosh} x$	
$\therefore x = \cosh y$	
$= \frac{e^y + e^{-y}}{2}$	From the definition of <i>cosh</i>
$2x = e^y + e^{-y}$	
$2x e^{y} = \left(e^{y}\right)^{2} + 1$	From multiplying through by e^y
$(e^{y})^{2} - 2x(e^{y}) + 1 = 0$	Which is a "quadratic in disguise"
$e^{y} = \frac{2x \pm \sqrt{(-2x)^{2} - 2}}{2(1)}$	4(1)(1)
$=\frac{2x\pm\sqrt{4x^2-4}}{2}$	-
$= \frac{2x \pm \sqrt{4}\sqrt{x^2} - 2}{2}$	1
$= x \pm \sqrt{x^2 - 1}$	
$y = ln \left(x \pm \sqrt{x^2 - 1} \right)$	-)

Now, as the arcosh function is one-to-one only one of these two possibilities can apply. The one to select, corresponding to the gold curve that in turn came

from the red half of the *cosh* curve is the following,

$$\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1}) \quad x \in \mathbb{R}, \ x \ge 1 \quad \Box$$

(The other solution would correspond to the inverse of the green half of the *cosh* curve, and would be a reflection of the gold curve in the *x*-axis)

5.3 Example

- (i) Determine the exact value of *arcosh*(4)
- Solve, to three decimal places, cosh w = 2(ii)

[3 marks]

Solution :

(i)
$$arcosh(4) = ln(4 + \sqrt{15})$$
 About 2.06
(ii) $w = arcosh(2)$ i.e. $x = 2$
 $= ln(x \pm \sqrt{x^2 - 1})$
 $= ln(2 \pm \sqrt{3})$
 $= \pm 1.316$

_____ \

This example is also covered in the Exam Solutions teaching video.

5.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Express each of the following as a natural logarithm,

 $(\mathbf{i}) \quad arcosh(3)$

[1 mark]

(ii)
$$arcosh(\sqrt{3})$$

[1 mark]

(iii)
$$arcosh(3\sqrt{2})$$

[2 marks]

Question 2

Find the exact value of $arcosh\left(\frac{13}{5}\right)$ in as simple a form as possible

[3 marks]

Question 3

Solve the equation $\cosh w = 12$ giving both solutions to 3 decimal places

[3 marks]

Question 4

Further A-Level Examination Question from June 2017, FP3, Q3 (Edexcel) (a) Using the definitions for cosh x in terms of exponentials, show that

$$\cosh 2x = 2\cosh^2 x - 1$$

[3 marks]

(**b**) Find the exact values of x for which $29 \cosh x - 3 \cosh 2x = 38$ giving your answers in terms of natural logarithms

[6 marks]

Question 5

Further A-Level Examination Question from June 2008, FP2, Q2 (Edexcel) Find the values of *x* for which

 $8 \cosh x - 4 \sinh x = 13$

giving your answers as natural logarithms.

Question 6

Further A-Level Examination Question from June 2004, P5. Q1(b) (Edexcel) Solve,

$$csch x - 2 coth x = 2$$

giving your answer in the form *k* ln *a* where *k* and *a* are integers

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk