Lesson 4

Further A-Level Pure Mathematics, Core 2

Hyperbolic Functions

4.1 Osborn's Rule

There are obvious similarities between identities involving the circular trigonometric functions (cos, sin, tan, sec, csc and cot) and the hyperbolic functions (cosh, sinh, tanh, sech, csch, coth).
Previously ${ }^{\dagger}$ the following where proven,

Hyperbolic	Circular
$\cosh ^{2} x-\sinh ^{2} x=1$	$\cos ^{2} x+\sin ^{2} x=1$
$\cosh ^{2} x+\sinh ^{2} x=\cosh 2 x$	$\cos ^{2} x-\sin ^{2} x=\cos 2 x$
$2 \sinh x \cosh x=\sinh 2 x$	$2 \sin x \cos x=\sin 2 x$
$\cosh (A+B)=\cosh A \cosh B+\sinh A \sinh B$	$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cosh 3 A=4 \cosh A-3 \cosh A$	$\cos 3 A=4 \cos ^{3} A-3 \cos A$
$\sinh A-\sinh B=2 \sinh \left(\frac{A-B}{2}\right) \cosh \left(\frac{A+B}{2}\right)$	$\sin A-\sin B=2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)$

Given that the circular trigonometric identities are already known, it would be ideal if the hyperbolic identities could be obtained from them. In some of the comparisons in the above table the hyperbolic identity is identical when \cos is replaced with cosh and \sin replaced with \sinh. However, in other comparisons when the same swap is made, the odd sign needs changing. Exactly when a sign needs changing is given by Osborn's Rule. It allows any circular trigonometric identity to be taken and the corresponding hyperbolic identity easily written down.

Osborn's Rule

- Replace \cos by $\cosh : \cos A \rightarrow \cosh A$
- Replace \sin by $\sinh : \sin A \rightarrow \sinh A$ However ...
- Replace any product (or implied product) of two \sin terms by minus the product of two sinh terms
e.g. $\sin A \sin B \rightarrow-\sinh A \sinh B$

$$
\tan ^{2} A \rightarrow-\tanh ^{2} A \quad\left(\text { an implied product as } \tan ^{2} A=\frac{\sin ^{2} A}{\cos ^{2} A}\right)
$$

[^0]
4.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

(i) Use Osborn's Rule to write down the hyperbolic identity corresponding to,

$$
1+\tan ^{2} x=\sec ^{2} x
$$

(ii) Prove that your part (i) answer is correct using the facts that,

$$
\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1} \quad \text { and } \quad \operatorname{sech} x=\frac{2}{e^{x}+e^{-x}}
$$

Question 2

Use Osborn's Rule to write down the hyperbolic identity corresponding to,

$$
\cos 2 x=1-2 \sin ^{2} x
$$

Question 3

Further A-Level Examination Question from June 2010, FP3, Q3 (Edexcel)
(a) Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prove that,

$$
\cosh 2 x=1+2 \sinh ^{2} x
$$

(b) Solve the equation

$$
\cosh 2 x-3 \sinh x=15
$$

giving your answer as exact logarithms

Question 4

Use Osborn's Rule to write down the hyperbolic identity corresponding to,

$$
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
$$

Question 5

Further A-Level Examination Question from June 2011, FP3, Q5 (Edexcel)

Curve C_{1} has equation $y=3 \sinh 2 x$, and curve C_{2} has equation $y=13-3 e^{2 x}$
(a) Sketch the graphs of the curves C_{1} and C_{2} on one set of axes, giving the equation of any asymptote and the coordinates of points where the curves cross the axes

(b) Solve the equation $3 \sinh 2 x=13-3 e^{2 x}$ giving your answer in the form $\frac{1}{2} \ln k$, where k is an integer

[^0]: \dagger In Lesson 2, Example 2.2 and Exercise 2.3

