Lesson 3

Further A-Level Pure Mathematics, Core 2 Hyperbolic Functions

3.1 arsinh x

Any one-one function, such as sinh x, has an inverse that, graphically, is a reflection in the line y = x. The inverse of sinh x is called *arsinh x*.

Given that sinh x is defined in terms of exponentials, the expectation would be that the inverse function, arsinh x, involves logarithms and this is the case.

The Inverse Of sinh x : arsinh x					
$\operatorname{arsinh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$	$x \in \mathbb{R}$				

A proof of this is written out on the next page which the following eight minute excellent video from *Exam Solutions* will talk through.

Teaching Video: http://www.NumberWonder.co.uk/v9102/3.mp4

3.2 The Proof

y = arsinh x $\therefore x = sinh y$ $=\frac{e^{y}-e^{-y}}{2}$ From the definition of *sinh* $2x = e^y - e^{-y}$ $2x e^{y} = (e^{y})^{2} - 1$ From multiplying through by e^{y} $(e^{y})^{2} - 2x(e^{y}) - 1 = 0$ Which is a "quadratic in disguise" $e^{y} = \frac{2x \pm \sqrt{(-2x)^{2} - 4(1)(-1)}}{2(1)}$ $= \frac{2x \pm \sqrt{4x^2 + 4}}{2}$ $= \frac{2x \pm \sqrt{4}\sqrt{x^2 + 1}}{2}$ $= x \pm \sqrt{x^2 + 1}$ Now, $e^y > 0$ since $\sqrt{x^2 + 1} > x$ $\therefore e^y = x + \sqrt{x^2 + 1}$ $y = ln\left(x + \sqrt{x^2 + 1}\right)$ That is, $\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$

3.3 Example

Determ	ine the exact value of		
(i)	arsinh(2)	(ii)	arsinh(-3)

[2 marks]

Solution :

(i)	$arsinh(2) = ln(2 + \sqrt{5})$	About 1.44
(ii)	$arsinh(-3) = ln(-3 + \sqrt{10})$	About - 1.81

This example is also covered in the teaching video.

3.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Express each of the following as a natural logarithm,

 (\mathbf{i}) arsinh(1)

[1 mark]

(ii)
$$arsinh(\sqrt{3})$$

[1 mark]

(iii)
$$arsinh(2\sqrt{2})$$

[2 marks]

Question 2

Find the exact value of $arsinh\left(\frac{3}{4}\right)$ in as simple a form as possible

[2 marks]

Question 3

Find the exact value of $arsinh\left(\frac{1}{\sqrt{3}}\right)$ in as simple a form as possible

[2 marks]

Question 4

With the aid of the identity $\cosh^2 x - \sinh^2 x = 1$ solve the following equation, giving exact answers as natural logarithms.

 $2\cosh^2 x - 5\sinh x = 5$

[6 marks]

Question 5

Further A-Level Examination Question from June 2015, FP3, Q1 (Edexcel) Solve the equation

 $2\cosh^2 x - 3\sinh x = 1$

giving your answers in terms of natural logarithms

[6 marks]

Question 6 *Further A-Level Examination Question from June 2013, FP3(R), Q7(a) (Edexcel)*

The curves have equations, $y = 6 \cosh x$ and $y = 9 - 2 \sinh x$ Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^x , find exact values for the *x*-coordinates of the two points where the curves intersect.

Question 7

Further A-Level Examination Question from June 2002, P6, Q1 (Edexcel) Prove that $\sinh(i\pi - \theta) = \sinh \theta$

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk