Lesson 3

Further A-Level Pure Mathematics, Core 2
 Hyperbolic Functions

$3.1 \operatorname{arsinh} x$

Any one-one function, such as $\sinh x$, has an inverse that, graphically, is a reflection in the line $y=x$. The inverse of $\sinh x$ is called $\operatorname{arsinh} x$.

Given that $\sinh x$ is defined in terms of exponentials, the expectation would be that the inverse function, $\operatorname{arsinh} x$, involves logarithms and this is the case.

The Inverse Of $\sinh x: \operatorname{arsinh} x$

$$
\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right) \quad x \in \mathbb{R}
$$

A proof of this is written out on the next page which the following eight minute excellent video from Exam Solutions will talk through.

Teaching Video: http://www.NumberWonder.co.uk/v9102/3.mp4

3.2 The Proof

$$
\begin{aligned}
y & =\operatorname{arsinh} x \\
\therefore x & =\sinh y \\
& =\frac{e^{y}-e^{-y}}{2} \quad \text { From the definition of sinh } \\
2 x & =e^{y}-e^{-y} \\
2 x e^{y} & =\left(e^{y}\right)^{2}-1 \quad \text { From multiplying through by } e^{y} \\
\left(e^{y}\right)^{2}-2 x\left(e^{y}\right)-1 & =0 \quad \text { Which is a "quadratic in disguise" } \\
e^{y} & =\frac{2 x \pm \sqrt{(-2 x)^{2}-4(1)(-1)}}{2(1)} \\
& =\frac{2 x \pm \sqrt{4 x^{2}+4}}{2} \\
& =\frac{2 x \pm \sqrt{4} \sqrt{x^{2}+1}}{2} \\
\text { Now, } e^{y}> & 0 \operatorname{since} \sqrt{x^{2}+1} \\
\therefore e^{y} & =x+\sqrt{x^{2}+1}>x \\
y & =\ln \left(x+\sqrt{x^{2}+1}\right) \\
\text { That is, arsinh } x & =\ln \left(x+\sqrt{x^{2}+1}\right)
\end{aligned}
$$

3.3 Example

Determine the exact value of
(i) $\operatorname{arsinh}(2)$
(ii) $\operatorname{arsinh}(-3)$
[2 marks]
Solution :
(i) $\operatorname{arsinh}(2)=\ln (2+\sqrt{5})$
(ii) $\operatorname{arsinh}(-3)=\ln (-3+\sqrt{10})$

About 1.44
About - 1.81

This example is also covered in the teaching video.

3.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Express each of the following as a natural logarithm,
(i) $\operatorname{arsinh}(1)$
(ii) $\operatorname{arsinh}(\sqrt{3})$
(iii) $\operatorname{arsinh}(2 \sqrt{2})$
[2 marks]

Question 2

Find the exact value of $\operatorname{arsinh}\left(\frac{3}{4}\right)$ in as simple a form as possible

Question 3

Find the exact value of $\operatorname{arsinh}\left(\frac{1}{\sqrt{3}}\right)$ in as simple a form as possible

Question 4

With the aid of the identity $\cosh ^{2} x-\sinh ^{2} x=1$ solve the following equation, giving exact answers as natural logarithms.

$$
2 \cosh ^{2} x-5 \sinh x=5
$$

Question 5

Further A-Level Examination Question from June 2015, FP3, Q1 (Edexcel)
Solve the equation

$$
2 \cosh ^{2} x-3 \sinh x=1
$$

giving your answers in terms of natural logarithms

Question 6

Further A-Level Examination Question from June 2013, FP3(R), Q7(a) (Edexcel)

The curves have equations, $y=6 \cosh x$ and $y=9-2 \sinh x$
Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^{x}, find exact values for the x-coordinates of the two points where the curves intersect.

Question 7

Further A-Level Examination Question from June 2002, P6, Q1 (Edexcel)
Prove that $\sinh (i \pi-\theta)=\sinh \theta$
[4 marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2023 Number Wonder

