Lesson 11

Further A-Level Pure Mathematics, Core 2
 Hyperbolic Functions

11.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40
Provided : Examination Mathematical Formulae Book

Question 1

Find $\int \sin ^{5} x d x$

Question 2

Given that $y=\operatorname{artanh}(\cos x)$ find a simplified expression for $\frac{d y}{d x}$

Question 3

Use the substitution $x=5 \sinh u$ to show that, for some constant c,

$$
\int \sqrt{x^{2}+25} d x=\frac{1}{2} x \sqrt{x^{2}+25}+\frac{25}{2} \operatorname{arsinh}\left(\frac{x}{5}\right)+c
$$

Question 4

FM Examination Question from June 2021, Paper 1, Q4 (AQA)
Show that the solutions to the equation,

$$
3 \tanh ^{2} x-2 \operatorname{sech} x=2
$$

can be expressed in the form,

$$
x= \pm \ln (a+\sqrt{b})
$$

where a and b are integers to be found.
You may use without proof the result $\operatorname{arcosh} y=\ln \left\{y+\sqrt{y^{2}-1}\right\}$

Question 5

Given that $y=\operatorname{arcosh} x$, show that for $x>1$,

$$
\left(x^{2}-1\right) \frac{d^{3} y}{d x^{3}}+3 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0
$$

Question 6

(i) Use the substitution $x=\cosh ^{2} u$ to show that, for $x>1$,

$$
\int \sqrt{\frac{x}{x-1}} d x=\sqrt{x-1} \sqrt{x}+\operatorname{arcosh}(\sqrt{x})+c
$$

for some unknown constant, c

[6 marks]

(ii) Hence, or otherwise, determine the exact value of $\int_{2}^{4} \sqrt{\frac{x}{x-1}} d x$

You may use without proof the result $\operatorname{arcosh} y=\ln \left\{y+\sqrt{y^{2}-1}\right\}$

Question 7

Show that $\int_{1}^{3} \frac{1}{\sqrt{3 x^{2}-6 x+7}} d x=\frac{1}{\sqrt{3}} \ln (2+\sqrt{3})$

