Further A-Level Pure Mathematics: Core 1
Matrix Systems of Equations

8.1 In The Corner Of A House

Traditionally, in moving from two dimensions into three, the x-axis stays where is is and the old wall made by the x-axis and the y-axis falls backward to become the floor, with the newly introduced z-axis pointing skyward.
The floor is a surface, and points on that surface have no height.
In other words, the floor is a plane with equation $z=0$ and the z-axis gives the direction of that plane's normal. The point $(0,0,1)$ is on the z-axis and the displacement vector from the origin to that point is a handy version of the (floor) plane's normal. That is,

$$
\mathbf{N}_{z=0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Likewise, the front wall (with a window in it) is the plane with equation $y=0$. It has normal, $\mathbf{N}_{y=0}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
Finally, the left side wall has equation $x=0$ and normal $\mathbf{N}_{x=0}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

8.2 The Matrix Of Normals

The three normals can be used as the columns of a 3×3 matrix,

$$
\mathbf{N}_{x=0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{N}_{y=0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \mathbf{N}_{z=0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The matrix formed is the 3×3 identity matrix. If any three dimensional point (x, y, z) is multiplied by this matrix it will remain where it is. Now for the clever bit: for a tranformation of interest, T, ask "what will T do to the standard three normals"? Then, write down the corresponding matrix of (transformed) normals. You will then have a matrix that will T transform any points you feed it.

8.3 Reflection in $z=0$ (Example)

Suppose that it is desired to reflect points in the floor, the plane $z=0$. To work out the matrix that will do this note that the side wall and the front (with a window) walls normal vectors need to be left alone, but the floor's normal vector, instead of pointing upward, will (after the reflection) point downward.
The matrix to reflect in the plane $z=0$ is now formed like so;

$$
\mathbf{N}_{x=0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{N}_{y=0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \operatorname{Ref}_{z=0}=\left(\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right)
$$

8.4 Asleep On The Floor

Sleep on the floor : Sleep is $z z z Z Z$: The floor is $z=0 \ldots$

8.5 Rotation of 180° about the \boldsymbol{y}-axis

To reduce clutter in diagrams, regard the axes as the normal vectors and view the points $(1,0,0),(0,1,0)$ and $(0,0,1)$ as displacement vectors that are the normals to the planes $x=0, y=0$ and $z=0$ respectively.

Suppose that it is required that the matrix representing a 180° rotation about the y-axis is determined. Think about where this would send the three normal vectors associated with the red, amber, and green points in the above diagram. After a pause for thought, a diagram like the one below will be in mind.

Writing down the matrix of normals in red, amber, green order: $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
Multiplying any points by this matrix will now rotate them by 180° about the y-axis. Note that the rotation is anticlockwise when looking down the positive y-axis towards the origin. For 180° is does not matter if you went the wrong way but for other angles, say 90°, it would be important to get that correct.

8.6 Example

$$
\mathbf{M}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

(i) With the aid of the following diagram, or otherwise, determine the single transformation represented by the matrix \mathbf{M}.

(ii) The point $A(3,-1,4)$ is transformed using this matrix.

Find the coordinates of the image of A.

[1 mark]

(iii) The point $B(a,-a, 2 a-1)$ is transformed to the point with coordinates $(a, a-5,-a)$ using matrix \mathbf{M}.
Find the value of a.

8.7 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

With the aid of the above diagram, or otherwise, write down the matrix that will represent,
(i) reflection in the plane $x=0$
(ii) rotation of 180° about the x-axis
(iii) rotation of 90° about the y-axis

Question 2

The three dimensional plot is of the plane with equation $z=-y$

Write down the matrix that will reflect points in the plane $z=-y$

Question 3

Describe the transformations represented by the following matrices,
(i) $\quad\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
[2 marks]
(ii) $\quad\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
[2 marks]
(iii) $\quad\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Question 4

Further A-Level Examination Question from October 2020, Paper 1, Q3 (OCR)
Your are given the matrix $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$
(a) Find \mathbf{A}^{4}
(b) Describe the transformation that \mathbf{A} represents.

The matrix \mathbf{B} represents a reflection in the plane $x=0$
(c) Write down the matrix \mathbf{B}

The point P has coordinates (2,3,4).
The point P^{\prime} is the image of P under the transformation represented by \mathbf{B}
(d) Find the coordinates of P^{\prime}

Question 5

Further A-Level Examination Question from Practice Paper Set 1, Q5 (OCR)
(a) Write down the 3×3 matrix \mathbf{M}_{1} that represents a reflection in the plane $y=0$
(b) Write down the single transformation represented by the matrix \mathbf{M}_{2}

$$
\mathbf{M}_{2}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(c) (i) Find the determinants of \mathbf{M}_{1} and \mathbf{M}_{2}
(ii) Explain how the signs and magnitudes of these determinants relate to the transformations represented by \mathbf{M}_{1} and \mathbf{M}_{2}
(d) (i) Find the matrix \mathbf{M}_{3} where $\mathbf{M}_{3}=\mathbf{M}_{1} \mathbf{M}_{2}$
(ii) Describe the single transformation represented by \mathbf{M}_{3}

Question 6

\mathbf{A} is the matrix representing a reflection in the plane $x=0$ and \mathbf{B} is the matrix representing a reflection in the plane $y=0$
(i) Write down the matrices \mathbf{A} and \mathbf{B}
(ii) The point $P(a, b, c)$ is transformed using matrix \mathbf{A}. Find the coordinates of P^{\prime} in terms of a, b and c
(iii) $\quad P^{\prime}$ is transformed using matrix \mathbf{B}.
Find the coordinates of the image of P^{\prime} in terms of a, b and c.
[2 marks]

Question 7

Further A-Level Examination Question from May 2020, Paper 1, Q3 (AQA)
Which one of the matrices below represents a rotation of 90° about the x-axis?
Circle your answer.

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

Question 8

Further AS-Level examination Question from October 2020, Q4, (OCR)
The matrix \mathbf{M} is $\left(\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(a) (i) Calculate det \mathbf{M}
(ii) State two geometrical consequences of this value for the transformation associated with \mathbf{M}.
(b) Describe fully the transformation associated with \mathbf{M}.
[1 mark]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2023 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

