A-Level Applied Mathematics
Revision

GRADE

GRABBER

Numbers 1 to 3
(With answers)

Grade Grabber 1

Applied Mathematics Revision

Question 1

A particle's position relative to a fixed origin, O, is given by;

$$
\boldsymbol{r}=\left(2 t^{3}+12 t\right) \boldsymbol{i}+\left(8 t^{3}+3 t^{2}\right) \boldsymbol{j}
$$

At time T seconds the particle is moving in the direction of the vector $(i+3 j)$
(i) Differentiate to find an expression for the particle's velocity in the form $\boldsymbol{v}=p \boldsymbol{i}+q \boldsymbol{j}$
(ii) By using the fact that $q=3 p$ form an equation and then solve it to calculate the value of T
(iii) What was the speed of the particle at time T ?

Question 2

Morning Rise ${ }^{\mathrm{TM}}$ breakfast cereal is supplied in packets whose masses are normally distributed with mean 500 g and standard deviation 2.5 g
(i) Calculate the probability that a packet of Morning Rise ${ }^{\mathrm{TM}}$ chosen at random has a mass that is greater than 502 g
Give your answer to 3 decimal places.

The supplier claims that each packet of Morning Rise ${ }^{\text {TM }}$ has a mass of at least 497 g A retailer decides to test this claim by weighing 200 packets at random
(ii) Estimate, to the nearest whole number, the number of packets the retailer is likely to find to have a mass less than 497 g
[2 marks]
The supplier reviews quality control and decides to reject 10% of the packets in any batch; the 5% with the largest mass and the 5% with the smallest mass.
(iii) Calculate, to 2 decimal places, the limits within which the mass of a packet of Morning Rise ${ }^{\mathrm{TM}}$ must lie if it is to be accepted by the supplier

Question 3

A javelin is thrown from horizontal ground with an initial speed of $65 \mathrm{~m} / \mathrm{s}$ at an angle of 36° above the horizontal.
By modelling the javelin as a particle work out
(i) The time of flight
(ii) The maximum height of the javelin
(iii) The range of the throw
(iv) The speed of the arrow after 1.5 seconds

Question 4

A stone is skimmed across a lake such that its first bounce occurs 14.4 m from the launch point and its second bounce is 24.0 m from the launch point.

If the bounces continue in the fashion of a geometric progression, calculate the possible total length of the throw.

