A-Level Pure Mathematics: Year 2 Differential Equations I

7.1 Revision

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

(i) Determine the general solution to the differential equation, $\frac{d y}{d x}=-\frac{x}{y}$
(ii) The general solution is represented by all possible circles centred on the origin. Given that $y=6$ when $x=2.5$ find the particular solution.
Present your solution in the form $x^{2}+y^{2}=r^{2}$ where r is a constant.
(iii) Which circle on the following graph represents the particular solution ?

Question 2

A-Level Examination Question from June 2012, Paper C4, Q4 (Edexcel)
Given that $y=2$ at $x=\frac{\pi}{4}$, solve the differential equation,

$$
\frac{d y}{d x}=\frac{3}{y \cos ^{2} x}
$$

Question 3

A-Level Examination Question from October 2020, Paper 1, Q14 (Edexcel)
A large spherical balloon is deflating.
At time t seconds the balloon has radius $r \mathrm{~cm}$ and volume $V \mathrm{~cm}^{3}$
The volume of the balloon is modelled as decreasing at a constant rate.
(a) Using this model, show that $\frac{d r}{d t}=-\frac{k}{r^{2}}$ where k is a positive constant.

Given that - the initial radius of the balloon is 40 cm

- after 5 seconds the radius of the balloon is 20 cm
- the volume of the balloon continues to decrease at a constant rate until the balloon is empty
(b) solve the differential equation to find a complete equation linking r and t
(c) Find the limitation on the values of t for which the equation in part (b) is valid.

Question 4

A-Level Examination Question from June 2011, Paper C4, Q8 (Edexcel)
(a) Find $\int(4 y+3)^{-\frac{1}{2}} d y$

[2 marks]

(b) Given that $y=1.5$ at $x=-2$, solve the differential equation,

$$
\frac{d y}{d x}=\frac{\sqrt{(4 y+3)}}{x^{2}}
$$

giving your answer in the form $y=f(x)$

Question 5

A-Level Examination Question from January 2011, Paper C4, Q3 (Edexcel)
(a) Express in partial fractions;

$$
\frac{5}{(x-1)(3 x+2)}
$$

(b) Hence find;

$$
\int \frac{5}{(x-1)(3 x+2)} d x, \quad x>1
$$

(c) Find the particular solution of the differential equation

$$
(x-1)(3 x+2) \frac{d y}{d x}=5 y, \quad x>1
$$

for which $y=8$ at $x=2$
Give your answer in the form $y=f(x)$

