## Lesson 6

# A-Level Pure Mathematics : Year 2 Differential Equations I

## 6.1 Rates Of Change (with integration)

Situations involving *rates of change* often result in a differential equation. There is a skill in setting up the differential equation that effectively models the physical situation, and another skill in solving it (if it's solvable!).

### 6.2 Will The Sink Overflow ?



Photograph by Martin Hansen

A bathroom sink has a maximum capacity of 11 litres.

A small child has left a tap running and water is entering the sink at a constant rate of 3 litres per minute. Fortunately the plug has been left out.

Given a volume of water, V, in the sink, the rate at which water can exit is 0.25V. Form a differential equation and obtain its general solution.

Use the general solution to determine if the sink will overflow or not.

### 6.3 Exercise

# Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 65

## **Question 1**

A-Level Examination Question from October 2021, Paper 2, Q14 (Edexcel)



Water flows at a constant rate into a large tank.

The tank is a cuboid, with all sides of negligible thickness.

The base of the tank measures 8 m by 3 m and the height of the tank is 5 m.

There is a tap at a point T at the bottom of the tank, as shown.

At time *t* minutes after the tap has been opened,

- the depth of the water in the tank is *h* metres
- water is flowing into the tank at a constant rate of 0.48 m<sup>3</sup> per minute
- water is modelled as leaving the tank through the tap at a rate of 0.1h m<sup>3</sup> per minute
- (**a**) Show that, according to the model,

$$1200 \frac{dh}{dt} = 24 - 5h$$

Given that when the tap was opened, the depth of water in the tank was 2 m, (**b**) show that, according to the model,

$$h = A + B e^{-kt}$$

where *A*, *B* and *k* are constants to be found.

[6 marks]

Given that the tap remains open,

(c) determine, according to the model, whether the tank will ever become full, giving a reason for your answer.

[ 2 marks ]

A-Level Examination Question from June 2017, Paper C4, Q7 (Edexcel)



The diagram shows a vertical cylindrical tank of height 200 cm containing water. Water is leaking from a hole P on the side of the tank.

At time t minutes after the leaking starts, the height of water in the tank is h cm. The height h cm of the water in the tank satisfies the differential equation,

 $\frac{dh}{dt} = k(h-9)^{\frac{1}{2}}, \quad 9 < h \le 200 \text{ where } k \text{ is a constant.}$ 

When h = 130, the height of the water is falling at a rate of 1.1 cm per minute. (**a**) Find the value of k

[ 2 marks ]

Given that the tank was full of water when the leaking started,

(**b**) solve the differential equation with your value of k, to find the value of t when h = 50

A-Level Examination Question from January 2017, Paper C34, Q12 In freezing temperatures, ice forms on the surface of the water in a barrel. At time t hours after the start of freezing, the thickness of the ice formed is x mm. You may assume the thickness of the ice is uniform across the surface of the water. At 4 pm there is no ice on the surface, and freezing begins. At 6 pm, after two hours of freezing, the ice is 1.5 mm thick. In a simple model, the rate of increase of x, in mm per hour, is assumed to be constant for a period of 20 hours. Using this simple model, (a) express t in terms of x,

# [ 2 marks ]

(**b**) find the value of t when x = 3

[1 mark]

In a second model, the rate of increase of *x*, in mm per hour, is given by,

 $\frac{dx}{dt} = \frac{\lambda}{(2x+1)}$  where  $\lambda$  is a constant and  $0 \le t \le 20$ 

Using this second model,

(c) solve the differential equation and express t in terms of x and  $\lambda$ 

[ 3 marks ]

(**d**) find the exact value for  $\lambda$ ,

[1 mark]

(e) find at what time the ice is predicted to be 3 mm thick.

#### [ 2 marks ]

A-Level Examination Question from June 2006, Paper C4, Q7 (Edexcel)



At time t seconds the length of the side of a cube is x cm, the surface area of the cube is  $S \text{ cm}^2$ , and the volume of the cube is  $V \text{ cm}^3$ .

The surface area of the cube is increasing at a constant rate of 8  $\rm cm^2\,s^{-1}$  Show that,

$$(\mathbf{a}) \quad \frac{dx}{dt} = \frac{k}{x}$$
, where k is a constant to be found,

[4 marks]

$$(\mathbf{b}) \quad \frac{dV}{dt} = 2V^{\frac{1}{3}}$$

[ 4 marks ]

(c) Given that V = 8 when t = 0 solve the differential equation in part (b), and find the value of t when  $V = 16\sqrt{2}$ 

A-Level Examination Question from January 2013, Paper C4, Q8 (Edexcel) A bottle of water is put into a refrigerator. The temperature inside the refrigerator remains constant at 3 °C and t minutes after the bottle is placed in the refrigerator the temperature of the water in the bottle is  $\theta$  °C

The rate of change of the temperature of the water in the bottle is modelled by the

differential equation,  $\frac{d\theta}{dt} = \frac{(3 - \theta)}{125}$ 

(a) By solving the differential equation show that,  $\theta = A e^{-0.008 t} + 3$ where A is a constant.

[ 4 marks ]

Given that the temperature of the water in the bottle when it was put in the refrigerator was 16  $^{\circ}$ C,

(**b**) find the time taken for the temperature of the water in the bottle to fall to 10 °C, giving your answer to the nearest minute.

A-Level Examination Question from January 2018, Paper C34, Q14 (Edexcel) The volume of a spherical balloon of radius r cm is  $V \text{ cm}^3$ , where  $V = \frac{4}{3} \pi r^3$ 

(**a**) Find 
$$\frac{dV}{dr}$$

## [ 1 mark ]

The volume of the balloon increases with time t seconds according to the formula,

$$\frac{dV}{dt} = \frac{9000\pi}{(t+81)^{\frac{5}{4}}} \qquad t \ge 0$$

(**b**) Using the chain rule, or otherwise, show that

$$\frac{dr}{dt} = \frac{k}{r^n(t+81)^{\frac{5}{4}}} \qquad t \ge 0$$

where k and n are constants to be found.

[ 2 marks ]

Initially, the radius of the balloon is 3 cm.

(c) Using the values of k and n found in part (b), solve the differential equation

$$\frac{dr}{dt} = \frac{k}{r^n(t+81)^{\frac{5}{4}}} \qquad t \ge 0$$

to obtain a formula for r in terms of t.

[6 marks]

(d) Hence find the radius of the balloon when t = 175, giving your answer to 3 significant figures.

[1 mark]

(e) Find the rate of increase of the radius of the balloon when t = 175Give your answer to 3 significant figures.

[ 2 marks ]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk