Lesson 3

A-Level Pure Mathematics : Year 2 Differential Equations I

3.1 Type Three

A Type Three differential equation is of the form

$$
\frac{d y}{d x}=f(x) g(y)
$$

The solution technique is called separating the variables.

By this is meant rearranging the given equation into the form

$$
\frac{1}{g(y)} \frac{d y}{d x}=f(x)
$$

and then integrating both sides with respect to x.

Example

Solve the following differential equation,

$$
\frac{d y}{d x}=\frac{y^{2}}{x}
$$

given that $y=4$ when $x=1$
Present your solution as elegantly as possible and in the form $y=f(x)$

3.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Solve the following differential equation,

$$
\frac{d y}{d x}=6 x y^{2}
$$

given that $y=0.2$ when $x=1$
Present your solution as elegantly as possible and in the form $y=f(x)$

Question 2

Solve the following differential equation,

$$
\cos ^{2} x \frac{d y}{d x}-\frac{1}{y^{2}}=0
$$

given that $y=2$ when $x=\frac{\pi}{4}$
Present your solution as elegantly as possible and in the form $y=f(x)$

Question 3

Consider the differential equation;

$$
\frac{d y}{d x}=\frac{3 x^{2}}{y} \quad \text { where } y=3 \text { when } x=2
$$

By separating the variables, show that this has solution

$$
y^{2}=A x^{3}+B
$$

where A and B are integers that you should determine.

Question 4

Consider the differential equation;

$$
\frac{d y}{d x}=e^{y+x} \quad \text { where } y=0 \text { when } x=0
$$

By separating the variables, show that this has solution

$$
\frac{1}{e^{y}}+e^{x}=k
$$

where k is an integer that you should determine.

Question 5

The differential equation
The differential equation $\frac{d v}{d t}=10-0.2 v$ models the motion of a body falling vertically subject to air resistance, where v is the downward vertical speed in m / s and the time, t, is in seconds.
(i) Does $\frac{d y}{d x}$ represent displacement, velocity or acceleration?
[1 mark]
(ii) The body is dropped from rest. What is the initial acceleration?
[1 mark]
(iii) Find the terminal velocity which occurs when $\frac{d v}{d t}=0$
[1 mark]
(iv) Show that the differential equation can be written as, $\frac{1}{50-v} \frac{d v}{d t}=0.2$
(v) Remembering that the body was dropped from rest, show that the differential equation can be solved to give that, $v=50\left(1-e^{-0.2 t}\right)$

Question 6

(i) Find values of A and B for which, $\frac{1}{v(1+v)}=\frac{A}{v}+\frac{B}{1+v}$ where $v>0$
[2 marks]
(ii) Show that the differential equation $\frac{d v}{d t}=-\left(v+v^{2}\right)$ where $v=1$ when $t=0$ has solution, $\frac{2 v}{1+v}=e^{-t}$ for $v>0$
(iii) Show how the part (ii) answer can be rearranged to give

$$
v=\frac{1}{2 e^{t}-1}
$$

