A-Level Pure Mathematics : Year 2 Differential Equations I

2.1 Type Two

A Type One differential equation is of the form

$$
\frac{d y}{d x}=f(x)
$$

A Type Two differential equation is of the form

$$
\frac{d y}{d x}=f(y)
$$

The solution technique to apply to Type Two differential equation problems involves inverting both sides and then integrating with respect to y
Often, partial fractions arise and the tricky rearranging of a formula.

Example

Solve the following differential equation,

$$
\frac{d y}{d x}=\frac{1}{y^{4}}
$$

given that $y=3$ when $x=49$
Present your solution in the form $y=f(x)$
Teaching video : http://www.NumberWonder.co.uk/Video/v9066(2).mp4

2.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Solve the following differential equation,

$$
\frac{d y}{d x}=\frac{1}{y}
$$

given that $y=3$ when $x=4$
Present your solution in the form $y=f(x)$

Question 2

Find the general solution to the differential equation,

$$
\frac{d y}{d x}=y
$$

Present your solution as elegantly as possible and in the form $y=f(x)$

Question 3

Find the general solution to the differential equation,

$$
\frac{d y}{d x}=y+2
$$

Present your solution as elegantly as possible and in the form $y=f(x)$

Question 4

Solve the differential equation

$$
\frac{d y}{d x}=\cos ^{2} y \quad \text { given that } y=\frac{\pi}{4} \text { when } x=7
$$

Present your solution in the form $y=f(x)$

Question 5

Solve the following differential equation,

$$
\frac{d y}{d x}=\frac{1}{2 y-8}
$$

given that $y=5$ when $x=4$
(i) Present your solution in the form $x=f(y)$
(ii) By completing the square on your part (i) answer, present your solution in the form $y=f(x)$

Question 6

A-Level Examination Question from June 2018, Paper C34, Q13 (Edexcel)
(a) Express $\frac{1}{(4-x)(2-x)}$ in partial fractions.

The mass, x grams, of a substance at time t seconds after a chemical reaction is modelled by the differential equation,

$$
\frac{d x}{d t}=k(4-x)(2-x), \quad t \geqslant 0,0 \leqslant x<2
$$

where k is a constant.
Given that when $t=0, x=0$
(b) solve the differential equation and show that the solution can be written as,

$$
x=\frac{4-4 e^{2 k t}}{1-2 e^{2 k t}}
$$

Given that $k=0.1$
(c) find the value of t when $x=1$

Giving your answer, in seconds, to 3 significant figures.

