A-Level Pure Mathematics

Year 2

Differential
EquationS
I

Differential Equations I

Lesson 1

A-Level Pure Mathematics : Year 2
 Differential Equations I

1.1 Type One

Three types of differential equation are to be considered starting in this lesson with the most straight forward.

A Type One differential equation is of the form

$$
\frac{d y}{d x}=f(x)
$$

These have been encountered before, in the Year 1 pure mathematics course.

Example

A-Level Examination Question from January 2013, Paper C1, Q8 (Edexcel)

$$
\frac{d y}{d x}=-x^{3}+\frac{4 x-5}{2 x^{3}}, \quad x \neq 0
$$

Given that $y=7$ at $x=1$, find y in terms of x, giving each term in its simplest form.
Teaching Video : http://www.NumberWonder.co.uk/Video/v9066(1).mp4

The Year 2 version of such Type One questions will draw on the fact that it is now known how to integrate many more functions, using many more techniques.

1.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Solve the differential equation,

$$
\frac{d y}{d x}=\cos x \quad \text { given that } y=0.5 \text { when } x=\frac{\pi}{2}
$$

Question 2

Solve the differential equation

$$
\frac{d y}{d x}=\sec ^{2} x \quad \text { given that } y=1 \quad \text { when } x=\frac{3 \pi}{4}
$$

Question 3

(i) Find the displacement, $s \mathrm{~cm}$, from O of a particle at time $t \mathrm{~s}$, if its velocity, $v \mathrm{~cm} . \mathrm{s}^{-1}$, is given by the differential equation

$$
v=\frac{d s}{d t}=t^{2}-t+4
$$

and the displacement is 100 cm at time 6 s .
(ii) What will be the particle's displacement when $t=3 \mathrm{~s}$?

Question 4

Solve the differential equation,

$$
\frac{d y}{d x}=x^{2}\left(x^{3}+5\right)^{4} \text { given that } y=209 \text { when } x=0
$$

Hint : Chain rule backwards.

Question 5

(i) Find the general solution of the differential equation

$$
5 x \frac{d y}{d x}-1=0
$$

(ii) Given that $y=0$ when $x=3$, find the particular solution. Give your answer in an elegant a form as possible.

Question 6

(i) Find the general solution of the differential equation

$$
\sec x \frac{d y}{d x}-x=0
$$

Hint : Integration by parts.
[4 marks]
(ii) Given that $y=\pi$ when $x=\frac{\pi}{2}$, find the particular solution.

Question 7

Solve the differential equation,

$$
\frac{d y}{d x}=\frac{1}{9+x^{2}} \quad \text { given that } y=\frac{\pi}{9} \text { when } x=\sqrt{3}
$$

Hint : Let $x=3 \tan u$

Question 8

(i) Find the displacement $s \mathrm{~m}$ of a particle $t \mathrm{~s}$ after leaving O, where

$$
t \frac{d s}{d t}=t^{2}+4
$$

(ii) Given that $s=4 \ln 2$ when $t=2$, and $s=a+b \ln 2$ when $t=4$, find a and b.

