GCSE Mathematics

Grade Grabber 6

Question 1

(a) On the grid draw the three lines with equations;
(i) $y=2 x-3$
(ii) $x+y=3$
(iii) $x=-1$

(b) Shade in the triangle formed
(c) Determine the area of the triangle that you have shaded

Question 2

To the nearest million, how many seconds are there in a year?

Question 3

A standard six sided dice is rolled 150 times.
(i) How many times would you expect a " 5 " to be rolled ?
[1 mark]
(ii) What is the probability that the first time a " 5 " is rolled is on the third roll ? Give your answer as a decimal, correct to three significant figures.
[2 marks]

Question 4

A square free number is an integer that cannot be divided exactly by any square number greater than 1 .
(a) Which one of the following numbers is square free?
(i) 49
(ii) 50
(iii) 51
(iv) 52

For each numbers that is not square free state the square it is divisible by.
(b) Express $\sqrt{162}$ in the form $a \sqrt{b}$
where a and b are integers and b is square free.
[1 mark]

Question 5

An arithmetic progression is a sequence of the form

$$
a, \quad a+d, \quad a+2 d, \quad a+3 d, \ldots, \quad a+(n-1) d
$$

(i) If such a sequence has third term 16 and fourth term 21 list the first six terms of the sequence.
(ii) Will 2021 be in the sequence?
Give a reason for your answer.

Question 6

The kinetic energy, $K E$, of an object is directly proportional to to the square of its velocity, v.
In symbols, this can be written,

$$
K E \propto v^{2}
$$

When my car is moving at $25 \mathrm{~km} \mathrm{~h}^{-1}$, I estimate its kinetic energy to be 125000 joules.
(i) Write down a formula of the form

$$
K E=k v^{2}
$$

that relates the kinetic energy and the velocity of my car, where k is a constant, the value of which you have determined.
(ii) Use your part (i) formula to estimate the kinetic energy of my car when it is travelling at $80 \mathrm{~km} \mathrm{~h}^{-1}$

Question 7

A curve has the equation, $y=x^{2}-8 x+15$
(a) For this curve find,
(i) $\frac{d y}{d x}$
[2 marks]
(ii) The coordinates of the stationary point.
[3 marks]
(b) State, with a reason, whether the turning point is a minimum or a maximum.

Question 8

Find the perimeter of the following shape ;

15 cm

The shape may be thought of as being constructed from two quarter circles and two isosceles, right angled triangles, each with hypotenuse 15 cm .

Question 9

In $\triangle A B C$, two of the angles are, $A=68^{\circ}$, and $C=34^{\circ}$
Opposite the angle B, is a side of length $b=9.4 \mathrm{~cm}$
(i) Use a well known fact about the sum of the angles in a triangle to determine the size of angle B.
[1 mark]
(ii) Sketch the triangle, not to scale, and mark on all known lengths and angles.
(iii) Find the length of each missing side, stating which is a and which is c.

Question 10

In a government survey, a questionnaire is emailed to 15000 people who have previously agreed to take part.
The time taken, in hours, to return the questionnaire is logged.
The following table presents a summary.

Response time (hours)	Number of questionnaires Frequency = Area	Width	Height
$0 \leqslant h<2$	700		
$2 \leqslant h<4$	1100		
$4 \leqslant h<6$	2200		
$6 \leqslant h<8$	1700		
$8 \leqslant h<14$	3500		
$14 \leqslant h<24$	2700		

(i) How many questionnaires have not generated a response?
(ii) Plot a histogram to show the distribution of the times taken in responding to the questionnaire. Complete the columns headed Width and Height in the table above, to help you do this.

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

