Lesson 4

A-Level Pure Mathematics : Year 2

Integration II

4.1 The Hole In The Sequence

Mathematician's like integer sequences, and they absolutely love it when there is a mysterious hole in a sequence; a term that should be there but isn't !

Here is a Calculus integer sequence of derivatives;

Function $f(x)$	Derivative $f^{\prime}(x)$
\ldots	\ldots
$\frac{x^{3}}{3}$	x^{2}
$\frac{x^{2}}{2}$	x^{1}
$\frac{x^{1}}{1}$	x^{0}
The Hole	x^{-1}
$\frac{x^{-1}}{-1}$	x^{-2}
$\frac{x-2}{-2}$	x^{-3}
\cdots	\ldots

The reason for the hole is that the function sequence is hitting a division by zero;

$$
\ldots, \frac{x^{3}}{3}, \frac{x^{2}}{2}, \frac{x^{1}}{1}, \frac{x^{0}}{0}, \frac{x^{-1}}{-1}, \frac{x^{-2}}{-2}, \ldots
$$

Fortunately, from our work on differentiation ${ }^{\dagger}$, it is known what is in the hole.
In other words, we know what function differentiates to $\frac{1}{x}$; it's $\ln (x)$.
Consequently, the statement of The Chain Rule Backwards can be extended to include this special case;

The Chain Rule Backwards

$$
\begin{array}{rl}
\int f^{\prime}(x)[f(x)]^{n} d x=\frac{[f(x)]^{n+1}}{(n+1)}+c & n \neq-1 \\
\int f^{\prime}(x)[f(x)]^{-1} d x=\ln |f(x)|+c & \text { i.e. with } n=-1
\end{array}
$$

Example

Determine: $\int \frac{36 x^{2}}{4 x^{3}-9} d x$
Teaching Video: http://www.NumberWonder.co.uk/v9045/4.mp4

[3 marks]

4.2 Exercise

> Any solution based entirely on graphical
> or numerical methods is not acceptable
> Marks Available : 30

Question 1

Determine: $\int \frac{40 x^{3}}{1+2 x^{4}} d x$

Question 2

Determine: $\int \frac{35 x^{4}}{3-x^{5}} d x$

Question 3
Determine: $\int \frac{x^{3}+1}{x^{4}+4 x} d x$

Question 4

Determine: $\int \frac{8 x^{3}}{\left(x^{2}+1\right)\left(x^{2}-1\right)} d x$

Question 5

(i) Explain why finding $\int \frac{x+3}{x^{2}+x} d x$ can not be done by a straight forward application of The Chain Rule Backwards.
(ii) Prove that $\frac{x+3}{x^{2}+x}=\frac{3}{x}-\frac{2}{x+1}$

Begin your proof "RHS ="
[2 marks]
(iii) Use the part (ii) result to show $\int \frac{x+3}{x^{2}+x} d x=\ln \left|\frac{x^{3}}{(x+1)^{2}}\right|+c$

Question 6

Show that,

$$
\int_{1}^{3} \frac{6 x^{3}+5 x}{3 x^{4}+5 x^{2}+1} d x=\ln \left(\frac{17}{3}\right)
$$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

