#### Lesson 4

## A-Level Pure Mathematics : Year 2 Integration II

#### 4.1 The Hole In The Sequence

Mathematician's like integer sequences, and they absolutely love it when there is a mysterious hole in a sequence; a term that should be there but isn't !

| Function $f(x)$                       | Derivative $f'(x)$ |
|---------------------------------------|--------------------|
|                                       |                    |
| $\frac{x^3}{3}$                       | x <sup>2</sup>     |
| $\frac{\frac{x^3}{3}}{\frac{x^2}{2}}$ | $x^1$              |
| $\frac{x^1}{1}$                       | x <sup>0</sup>     |
| The Hole                              | $x^{-1}$           |
| $\frac{x-1}{-1}$                      | x <sup>-2</sup>    |
| $\frac{x-2}{-2}$                      | x <sup>-3</sup>    |
|                                       |                    |

Here is a Calculus integer sequence of derivatives;

The reason for the hole is that the function sequence is hitting a division by zero;

$$\dots, \frac{x^3}{3}, \frac{x^2}{2}, \frac{x^1}{1}, \frac{x^0}{0}, \frac{x^{-1}}{-1}, \frac{x^{-2}}{-2}, \dots$$

Fortunately, from our work on differentiation<sup>†</sup>, it is known what is in the hole. In other words, we know what function differentiates to  $\frac{1}{x}$ ; it's ln(x).

Consequently, the statement of The Chain Rule Backwards can be extended to include this special case;

#### The Chain Rule Backwards

$$\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{(n+1)} + c \qquad n \neq -1$$
  
$$\int f'(x) [f(x)]^{-1} dx = \ln |f(x)| + c \qquad \text{i.e. with } n = -1$$

† Differentiation III, Lesson 7

## Example

Determine: 
$$\int \frac{36 x^2}{4 x^3 - 9} dx$$

Teaching Video: http://www.NumberWonder.co.uk/v9045/4.mp4



[ 3 marks ]

#### 4.2 Exercise

### Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

# **Question 1**

Determine: 
$$\int \frac{40 x^3}{1 + 2 x^4} dx$$

[ 3 marks ]

# Question 2

Determine: 
$$\int \frac{35 x^4}{3 - x^5} dx$$

[ 3 marks ]

# Question 3

Determine:  $\int \frac{x^3 + 1}{x^4 + 4x} dx$ 

[4 marks]

Question 4

Determine: 
$$\int \frac{8x^3}{(x^2+1)(x^2-1)} dx$$

[4 marks]

## **Question 5**

(i) Explain why finding  $\int \frac{x+3}{x^2+x} dx$  can not be done by a straight forward application of The Chain Rule Backwards.

[2 marks]

(ii) Prove that 
$$\frac{x+3}{x^2+x} = \frac{3}{x} - \frac{2}{x+1}$$

Begin your proof "RHS ="

[ 2 marks ]

(iii) Use the part (ii) result to show 
$$\int \frac{x+3}{x^2+x} dx = ln \left| \frac{x^3}{(x+1)^2} \right| + c$$

[4 marks]

## **Question 6**

Show that,

$$\int_{1}^{3} \frac{6x^{3} + 5x}{3x^{4} + 5x^{2} + 1} dx = ln\left(\frac{17}{3}\right)$$

[8 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk