A-Level Pure Mathematics: Year 1
 Progress Test Revision

5.1 Example

The line with equation $y=3 x+1$ is a tangent to a circle with centre (30,21) (i) Find the equation of the circle.

The line with equation $y=3 x+k, \quad k \neq 1$, is also a tangent to the circle (ii) Find the value of the constant k

5.2 Revision Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available : 52

Question 1

A-Level Examination Question, June 2018, Paper 1, Q6 (Edexcel)

The circle C has centre A with coordinates (7,5)
The line l, with equation $y=2 x+1$, is the tangent to C at the point P (a) Show that an equation of the line $P A$ is $2 y+x=17$
(b) Find an equation for C

The line with equation $y=2 x+k, k \neq 1$, is also a tangent to C
(c) Find the value of the constant k

Question 2

Given that, $(7-\sqrt{3})(5-\sqrt{3})=a+b \sqrt{3}, \quad$ where a and b are integers,
find the value of a and the value of b

Question 3

(i) Complete the square for the following function,

$$
f(x)=x^{2}-8 x+23
$$

(ii) Use your part (i) answer to explain why the graph of the function will not have any x-axis crossing points
(iii) Given your previous answers, would you expect the discriminant of the function to be positive, negative or zero?
[1 mark]

Question 4

Given that, $\frac{\sqrt{3}}{3+2 \sqrt{3}}=m+n \sqrt{3}$, where m and n are integers,
find the value of m and the value of n

Question 5

Given that,

$$
5 x^{2}+10 x-2=a(x+b)^{2}+c
$$

where a, b and c are integers, find the value of a, the value of b and the value of c

Question 6

Find the set of values of x for which
(i) $3(2 x+1)>5-2 x$
(ii) $2 x^{2}-7 x+3>0$
(iii) both $3(2 x+1)>5-2 x$
and $2 x^{2}-7 x+3>0$

Question 7

AS-Level Examination Question, June 2018, Q14 (Edexcel)
The circle C has equation

$$
x^{2}+y^{2}-6 x+10 y+9=0
$$

(a) Find
(i) the coordinates of the centre of C
(ii) the radius of C

The line with equation $y=k x$, where k is a constant, cuts C at two distinct points
(b) Find the range of values of k

Question 8

$$
f(x)=x^{2}+(k+3) x+k \text { where } k \text { is a real constant }
$$

(a) Find the discriminant of $f(x)$ in terms of k
(b) Show that the discriminant of $f(x)$ can be expressed in the form $(k+a)^{2}+b$ where a and b are integers to be found.
(c) Show that, for all values of k, the equation $f(x)=0$ has real roots

Question 9

Solve the equation, $8^{2 x}-10\left(8^{x}\right)+16=0$

Question 10

$$
m(x)=x^{4}+2 x^{3}-3 x^{2}-8 x-4
$$

Factorise the quartic polynomial completely.

