A-Level Pure Mathematics : Year 1 Progress Test Revision

5.1 Example

The line with equation y = 3x + 1 is a tangent to a circle with centre (30, 21) (i) Find the equation of the circle.

[5 marks]

The line with equation y = 3x + k, $k \neq 1$, is also a tangent to the circle (ii) Find the value of the constant k

[2 marks]

5.2 Revision Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 52

Question 1

A-Level Examination Question, June 2018, Paper 1, Q6 (Edexcel)

The circle *C* has centre *A* with coordinates (7, 5)The line *l*, with equation y = 2x + 1, is the tangent to *C* at the point *P* (**a**) Show that an equation of the line *PA* is 2y + x = 17

[3 marks]

 (\mathbf{b}) Find an equation for C

[4 marks]

The line with equation y = 2x + k, $k \neq 1$, is also a tangent to C

(c) Find the value of the constant k

[3 marks]

Given that, $(7 - \sqrt{3})(5 - \sqrt{3}) = a + b\sqrt{3}$, where *a* and *b* are integers, find the value of *a* and the value of *b*

[2 marks]

Question 3

(i) Complete the square for the following function,

$$f(x) = x^2 - 8x + 23$$

[1 marks]

(ii) Use your part (i) answer to explain why the graph of the function will not have any *x*-axis crossing points

[2 marks]

(iii) Given your previous answers, would you expect the discriminant of the function to be positive, negative or zero ?

[1 mark]

Question 4

Given that, $\frac{\sqrt{3}}{3+2\sqrt{3}} = m + n\sqrt{3}$, where *m* and *n* are integers, find the value of *m* and the value of *n*

[3 marks]

Given that,

$$5x^{2} + 10x - 2 = a(x + b)^{2} + c$$

where a, b and c are integers, find the value of a, the value of b and the value of c

[3 marks]

Question 6

Find the set of values of *x* for which

(i) 3(2x+1) > 5-2x

[2 marks]

(ii) $2x^2 - 7x + 3 > 0$

[3 marks]

(iii) both 3(2x + 1) > 5 - 2xand $2x^2 - 7x + 3 > 0$

[1 mark]

AS-Level Examination Question, June 2018, Q14 (Edexcel) The circle C has equation

$$x^2 + y^2 - 6x + 10y + 9 = 0$$

(**a**) Find

(**i**) the coordinates of the centre of C

(**ii**) the radius of *C*

[3 marks]

The line with equation y = kx, where k is a constant, cuts C at two distinct points (**b**) Find the range of values of k

[6 marks]

 $f(x) = x^2 + (k + 3) x + k$ where k is a real constant (a) Find the discriminant of f(x) in terms of k

[2 marks]

(**b**) Show that the discriminant of f(x) can be expressed in the form $(k + a)^2 + b$ where *a* and *b* are integers to be found.

[2 marks]

(c) Show that, for all values of k, the equation f(x) = 0 has real roots

[2 marks]

Solve the equation, $8^{2x} - 10(8^x) + 16 = 0$

Question 9

$$m(x) = x^{4} + 2x^{3} - 3x^{2} - 8x - 4$$

Factorise the quartic polynomial completely.

[6 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk