8.1 Later Date Revision

The Factor Theorem
If for a given polynomial function $p(x), p(a)=0$ then $(x-a)$
is a factor of $p(x)$.

The Remainder Theorem
When $p(x)$ is divided by $(x-a)$ the remainder is $p(a)$

8.2 Exercise

$$
\text { Marks Available : } 47
$$

Question 1

A-Level Examination question from June 2005, Paper C2, Q3 (Edexcel)
(a) Use the factor theorem to show that $(x+4)$ is a factor of $2 x^{3}+x^{2}-25 x+12$
(b) Factorise $2 x^{3}+x^{2}-25 x+12$ completely.

Question 2

A-Level Examination question from January 2006, Paper C2, Q1 (Edexcel)

$$
f(x)=2 x^{3}+x^{2}-5 x+c
$$

where c is a constant.

Given that $f(1)=0$,
(a) Find the value of c
(b) Factorise $f(x)$ completely
(c) Find the remainder when $f(x)$ is divided by $(2 x-3)$

Question 3

A-Level Examination question from June 2010, Paper C2, Q2 (Edexcel)

$$
f(x)=3 x^{3}-5 x^{2}-58 x+40
$$

(a) Find the remainder when $f(x)$ is divided by $(x-3)$

Given that $(x-5)$ is a factor of $f(x)$
(b) Find all the solutions of $f(x)=0$.

Question 4

A-Level Examination question from June 2009, Paper C2, Q3 (Edexcel)

$$
f(x)=(3 x-2)(x-k)-8
$$

where k is a constant.
(a) Write down the value of $f(k)$

[1 mark]

When $f(x)$ is divided by $(x-2)$ the remainder is 4
(b) Find the value of k
(c) Factorise $f(x)$ completely

Question 5

A-Level Examination question from January 2010, Paper C2, Q3 (Edexcel)

$$
f(x)=2 x^{3}+a x^{2}+b x-6
$$

where a and b are constants.

When $f(x)$ is divided by $(2 x-1)$ the remainder is -5
When $f(x)$ is divided by $(x+2)$ there is no remainder.
(a) Find the value of a and the value of b
(b) Factorise $f(x)$ completely.

Question 6

A-Level Examination question from January 2009, Paper C2, Q6 (Edexcel)

$$
f(x)=x^{4}+5 x^{3}+a x+b
$$

where a and b are constants.

The remainder when $f(x)$ is divided by ($x-2$) is equal to the remainder when $f(x)$ is divided by $(x+1)$
(a) Find the value of a

Given that $(x+3)$ is a factor of $f(x)$
(b) find the value of b

