#### **10.1 Later Date Revision**

You May Use A Calculator

**Question 1** 



By using the constant speed formula triangle, or otherwise, write down a formula for *distance* in terms of *time* and *speed* 

distance =

**Question 2** 

(i) How many metres are in a kilometre ?

(ii) How many seconds are in a day?

[ 2 marks ]

#### **Question 3**

Tickles, my pet spider, moves at a constant speed of 0.6 ms<sup>-1</sup> for 12 minutes.

(i) How many seconds are in 12 minutes ?

(**ii**) How far does Tickles travel in this time ?

(iii) Is this more or less than  $\frac{1}{2}$  km?

[4 marks]

[ 2 marks ]

| A cycli | ist leaves her house at 6.48 am.                            |             |
|---------|-------------------------------------------------------------|-------------|
| She pe  | ddles at a steady speed of 7 m/s returning home at 7.33 am. |             |
| (i)     | For how long did the cyclist peddle ?                       |             |
|         | Give your answer in seconds.                                |             |
| (#)     | How for did the qualist travel 9                            | [2 marks]   |
| (11)    | Give your ensuer in metres                                  |             |
|         | Give your answer in metres.                                 |             |
| ( iii ) | Change your part ( ii ) answer into km.                     | [ 2 marks ] |
|         |                                                             | [ 1 mark ]  |
| Questi  | on 5                                                        |             |
| A train | accelerates uniformly from a speed of 4 ms <sup>-1</sup> to |             |
| a speed | l of 28 ms <sup>-1</sup> over 32 seconds.                   |             |

(i) What is the average speed of the train over the 32 seconds ?

[ 1 mark ]

 $Distance = Average Speed \times Time.$ to calculate the distance the train covers whilst accelerating.

[ 1 mark ]

## **Question 6**

(ii)

Use the formula;

In mathematics the Greek letter delta,  $\Delta$ , is used for the word *change*.

A child's mass, M, increases from 15.8 kg to 18.1 kg What is  $\Delta M$ ?

[ 1 mark ]

On a speed-time graph;

- (i) What does the "gradient of a line" represent ?
- (ii) What does the "area under the graph" represent ?

# [ 1 mark ]

## [1 mark]

#### **Question 8**

The Speed-Time graph is of a mobility scooter approaching a STOP sign. At t = 0 the scooter's driver first applies the brakes.



(i) What speed was the driver doing when he first applies the brakes ?

#### [1 mark]

(ii) How long did it take for the mobility scooter to stop?

#### [1 mark]

(iii) What distance does the mobility scooter travel whilst stopping ?

#### [ 2 marks ]

(iv) The driver first applied the brakes when the STOP sign was 0.25 km away. Does it stop before or after reaching the STOP sign ?

#### [1 mark]

(**v**) What was the mobility scooter's rate of deceleration ?

GCSE Examination Question from May 2022, Paper 2H, Q3 (Edexcel)

An aeroplane travelled from New York City to Los Angeles. The aeroplane travelled a distance of 3980 kilometres 5 hours 24 minutes. Work out the average speed of the aeroplane. Give your answer in kilometres per hour correct to the nearest whole number.

[ 3 marks ]

#### **Question 10**

(i) I move from a point with *x* coordinate 5 to a point with *x* coordinate 9. What is  $\Delta x$ ?

#### [ 1 mark ]

(ii) I move from a point with y coordinate 11 to a point with y coordinate 23. What is  $\Delta y$ ?

#### [1 mark]

(iii) Use your part (i) and part (ii) answers to help calculate the gradient between the points with coordinates (5, 11) and (9, 23).

A line, **L**, passes through the points (0, -2) and (3, 4)



Find the gradient of the line L

[ 2 marks ]

#### Question 12

GCSE Examination Question from January 2021, Paper 1H, Q4 (Edexcel)

A train journey from Paris to Amsterdam took 3 hours 24 minutes. The total distance the train travelled was 433.5 km.

Work out the average speed of the train. Give your answer in kilometres per hour.

[ 3 marks ]



A car's speed over a sixty second period is given by the Speed-Time graph.

- (i) Between which two times was the car decelerating ?
- (ii) Calculate the rate of deceleration.

[ 2 marks ] ( iii ) Calculate the total distance travelled by the car over the sixty seconds. Clearly show your working.

[ 1 mark ]

A car is moving at a constant speed of 6 ms<sup>-1</sup> between t = 0 and t = 10 seconds. Then, over 30 seconds, it accelerates uniformly to a speed of 12 ms<sup>-1</sup> It then moves at a constant speed of 12 ms<sup>-1</sup> for 20 seconds.



Draw the Speed - Time graph for the car movements described.

### [ 3 marks ]

#### **Question 15**

GCSE Examination Question from January 2020, Paper 2H, Q10 (Edexcel)

Change a speed of 50 metres per second to a speed in kilometres per hour.

[ 3 marks ]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk