10.1 Later Date Revision
 You May Use A Calculator

Question 1

By using the constant speed formula triangle, or otherwise, write down a formula for distance in terms of time and speed
distance =

Question 2

(i) How many metres are in a kilometre ?
(ii) How many seconds are in a day?

Question 3

Tickles, my pet spider, moves at a constant speed of $0.6 \mathrm{~ms}^{-1}$ for 12 minutes.
(i) How many seconds are in 12 minutes?
(ii) How far does Tickles travel in this time?
(iii) Is this more or less than $\frac{1}{2} \mathrm{~km}$?

Question 4

A cyclist leaves her house at 6.48 am .
She peddles at a steady speed of $7 \mathrm{~m} / \mathrm{s}$ returning home at 7.33 am .
(i) For how long did the cyclist peddle ?

Give your answer in seconds.
(ii) How far did the cyclist travel?
Give your answer in metres.
(iii) Change your part (ii) answer into km.
[1 mark]

Question 5

A train accelerates uniformly from a speed of $4 \mathrm{~ms}^{-1}$ to a speed of $28 \mathrm{~ms}^{-1}$ over 32 seconds.
(i) What is the average speed of the train over the 32 seconds ?
(ii) Use the formula;
Distance $=$ Average Speed \times Time .
to calculate the distance the train covers whilst accelerating.

Question 6

In mathematics the Greek letter delta, Δ, is used for the word change.

A child's mass, M, increases from 15.8 kg to 18.1 kg
What is ΔM ?

Question 7

On a speed-time graph;
(i) What does the "gradient of a line" represent?
[1 mark]
(ii) What does the "area under the graph" represent?
[1 mark]

Question 8

The Speed-Time graph is of a mobility scooter approaching a STOP sign. At $t=0$ the scooter's driver first applies the brakes.

(i) What speed was the driver doing when he first applies the brakes?
(ii) How long did it take for the mobility scooter to stop?
(iii) What distance does the mobility scooter travel whilst stopping?
(iv) The driver first applied the brakes when the STOP sign was 0.25 km away. Does it stop before or after reaching the STOP sign?
[1 mark]
(v) What was the mobility scooter's rate of deceleration?

Question 9

GCSE Examination Question from May 2022, Paper 2H, Q3 (Edexcel)
An aeroplane travelled from New York City to Los Angeles.
The aeroplane travelled a distance of 3980 kilometres 5 hours 24 minutes.
Work out the average speed of the aeroplane.
Give your answer in kilometres per hour correct to the nearest whole number.

Question 10

(i) I move from a point with x coordinate 5 to a point with x coordinate 9 . What is Δx ?
(ii) I move from a point with y coordinate 11 to a point with y coordinate 23. What is Δy ?
[1 mark]
(iii) Use your part (i) and part (ii) answers to help calculate the gradient between the points with coordinates $(5,11)$ and $(9,23)$.

Question 11

A line, \mathbf{L}, passes through the points ($0,-2$) and (3, 4)

Find the gradient of the line \mathbf{L}

Question 12

GCSE Examination Question from January 2021, Paper 1H, Q4 (Edexcel)

A train journey from Paris to Amsterdam took 3 hours 24 minutes.
The total distance the train travelled was 433.5 km .

Work out the average speed of the train.
Give your answer in kilometres per hour.

Question 13

A car's speed over a sixty second period is given by the Speed-Time graph.
(i) Between which two times was the car decelerating?

[1 mark]

(ii) Calculate the rate of deceleration.
(iii) Calculate the total distance travelled by the car over the sixty seconds. Clearly show your working.

Question 14

A car is moving at a constant speed of $6 \mathrm{~ms}^{-1}$ between $t=0$ and $t=10$ seconds. Then, over 30 seconds, it accelerates uniformly to a speed of $12 \mathrm{~ms}^{-1}$
It then moves at a constant speed of $12 \mathrm{~ms}^{-1}$ for 20 seconds.

Draw the Speed - Time graph for the car movements described.

Question 15

GCSE Examination Question from January 2020, Paper 2H, Q10 (Edexcel)

Change a speed of 50 metres per second to a speed in kilometres per hour.

