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The Thue–Morse sequence is aperiodic: A proof

Martin Hansen

Although first investigated by the French mathematician Eugène Prouhet in
1851, the Thue–Morse sequence is named after the Norwegian, Axel Thue,
who used it in 1906 as a foundation stone for the branch of mathematics
Combinatorics on Words, and the American, Marston Morse, who applied
it in 1921 to great e↵ect in di↵erential geometry. It can be defined in several
ways. The following is particularly suited to introducing the sequence.

Definition : Generation of the Thue–Morse Word

The right-sided infinite Thue–Morse word may be generated in an it-
erative fashion by starting with an initial letter a and then repeatedly
applying the substitution ✓T M given by a ! ab, b ! ba. The finite
nth right-sided Thue–Morse word is defined as T M

n

= ✓nT M(a).

The table below gives the first few of the finite Thue–Morse words

n T M
n

= ✓nT M(a) (a ! ab, b ! ba) |a| |b| |T M
n

|

0 a 1 0 1
1 ab 1 1 2
2 abba 2 2 4
3 abbabaab 4 4 8
4 abbabaabbaababba 8 8 16
5 abbabaabbaababbabaababbaabbabaab 16 16 32

In the table, observe that each preceding word occurs at the start of
every subsequent word. In other words, the infinite Thue–Morse word is the
fixed point of an iterative process. What makes the Thue–Morse sequence
interesting is the fact that it is clearly not a chaotic random jumble of the
letters a and b. It seems to have pattern, but that pattern is hard to pin
down.

The full bi-infinite Thue–Morse word extends indefinitely to both the
left and the right. It has two remarkable properties that in combination are
what earn it the label ‘aperiodic’. The first is that if a duplicate copy of the
word is made, and translated left or right over the first, there is no position
at which the two pieces align other than if no translation is applied at all.
However, the following bi-infinite sequence also has this property,

. . . aaaaaaaaabaaaaaaaaa . . . .
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This is an example of a sequence that is non-periodic but it is not aperi-
odic. To be aperiodic there is the additional requirement that the sequence
contain no arbitrarily large periodic part.

Incidence Matrix and Perron–Frobenius Eigenvalue

Mathematically, this second requirement demands the substitution be prim-
itive. To explain this property, we first need to establish what the incidence
matrix of a substitution is. Let’s look at an example where there are no
parts that can be confused with each other. Consider the substitution,

a ! abaaaba, b ! abbb.

This has incidence matrix ✓
5 1
2 3

◆

because, in the substitution, a is replaced with five a and two b whereas b is
replaced with one a and three b. The matrix carries frequency information
but the order of the letters within the substitution is lost. Undergraduate
matrix algebra is now used to obtain the characteristic polynomial and the
eigenvalues. For the above,

�2 � 8�+ 13 = 0 with � = 4±
p
3.

To be primitive the incident matrix (or a positive integer power of that
matrix) must have all positive entries. The above matrix satisfies this re-
quirement and so is the primitive matrix of a primitive substitution. Such
a matrix has a largest positive eigenvalue (by Perron–Frobenius theory)
called the Perron–Frobenius eigenvalue. For our example, �PF = 4 +

p
3.

In general, if this special eigenvalue is irrational, we immediately know that
the substitution is aperiodic. This is because of Theorem 1, which formally
tidies up the above discussion.

Theorem 1 : Aperiodic Proof (Baake and Grimm, 2013)

Let ✓ be a primitive substitution on the finite alphabet A
n

=
{a1, a2, . . . , an} with incidence matrix M

✓

, and let w be a bi-infinite
word of ✓. If the Perron–Frobenius eigenvalue of M

✓

is irrational,
then w is aperiodic.

Proof

See Aperiodic Order: Volume 1, A Mathematical Invitation, by Michael
Baake and Uwe Grimm, page 89. ⇤
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Unfortunately, Theorem 1 does not allow us to lazily deduce that the
Thue–Morse word is aperiodic. Although the Thue–Morse substitution sat-
isfies the requirement of the theorem that it be primitive, the incidence
matrix gives rise to an integer eigenvalue rather than one that is irrational.
To be specific,

MT M =

✓
1 1
1 1

◆
) �2 � 2� = 0 ) �PF = 2.

The integer eigenvalue means that our desire to prove the Thue–Morse se-
quence is aperiodic is going to be a ‘living on our wit and cunning’ a↵air.
Along the way we shall make use of another definition of the Thue–Morse
words.

Definition : The Thue-Morse Words by Concatenation

T M
n

= T M
n�1 T M

n�1

for integer n � 1, with T M0 = a.

For example,

T M4 = T M3 T M3 = abbabaababbabaab = abbabaabbaababba.

The Thue–Morse Language Table

We are now almost ready to start working through the steps that will result
in a proof that the Thue–Morse word is indeed aperiodic. However, there
is one more idea to be grasped before starting in earnest. It is to consider
how many subwords of various lengths can occur in the Thue–Morse word.
To help explain this here is the start of the right-sided infinite word once
again,

abbabaabbaababbabaababbaabbabaab . . . .

Looking carefully, notice that the subword aaa does not appear. This is
an example of a cube. Whilst abab can be found (an example of a square)
ababab, another cube, can not. A substitution’s language table is the start
of an e↵ort to tabulate which subwords can occur. It can be drawn up by
hand, but often software is used. Here is the start of such a table for the
Thue–Morse word. This table will be useful later on.
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length 1 2 3 4 5 6 7 . . .
a aa aab aaba aabab aababb aababba . . .
b ab aba aabb aabba aabbaa aabbaab . . .

ba abb abaa abaab aabbab aabbaba . . .
T M bb baa abab ababb abaaba abaabab . . .
words bab abba abbaa abaabb abaabba . . .

bba baab abbab ababba ababbaa . . .
a ! ab baba baaba abbaab ababbab . . .
b ! ba babb baabb abbaba abbaaba . . .

bbaa babaa baabab abbaabb . . .
bbab babba baabba abbabaa . . .

bbaab babaab baababb . . .
bbaba babbaa baabbaa . . .

babbab baabbab . . .
bbaaba babaaba . . .
bbaabb babaabb . . .
bbabaa babbaab . . .

babbaba . . .
bbaabab . . .
bbaabba . . .
bbabaab . . .

of words 2 4 6 10 12 16 20 . . .

The Proof

This builds steadily over the next three pages as we establish three lemmas
and define what it means to be strongly cube free. We then show that the
(infinite) Thue–Morse word is strongly cube-free and so aperiodic.

Lemma 1 : Exclusion from T M of aaa and bbb

The subwords aaa and bbb cannot occur in the Thue–Morse word.

Proof (by contradiction)

Suppose by way of deriving a contradiction that the three letter subword
. . . aaa . . . has occurred in T M. Focus on the middle a. We can argue that
this a must have come from the iteration in a previous word of a letter b
because if it had come from a letter a then one of the letters adjacent to
a would be b, which neither is. But if it had come from a letter b then,
again, one of the letters adjacent to a would be b, which neither is. The
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only conclusion is that the original assumption, that . . . aaa . . . could occur
in the Thue–Morse word is false. By a similar argument, . . . bbb . . . can also
not occur in T M. ⇤

Lemma 2 : Exclusion from T M of ababa and babab

The subwords ababa and babab cannot occur in the Thue–Morse word.

Proof (by contradiction)

Assume that the five letter subword . . . ababa . . . has occurred in T M. With
a view to desubstitution this word can be placed into letter pair brackets in
two ways, either as . . . (ab)(ab)(a . . . or . . . a)(ba)(ba) . . . , which we consider
in turn.

CASE 1 : . . . (ab)(ab)(a . . .

The first bracketed pair desubstitutes to a, as does the second. In order
to desubstitute the third bracket the subsequent letter must be b. We then
have the following.

. . . (ab) (ab) (ab) . . .
# # # desubstitution

. . . a a a . . .

However, from Lemma 1, it is known that . . . aaa . . . can not occur and so
we deduce that . . . (ab)(ab)(a . . . can not occur.

CASE 2 : . . . a)(ba)(ba) . . .

The last bracketed pair desubstitutes to b, as does the bracket before.
In order to desubstitute the first bracket the previous letter must be b. We
then have the following.

. . . (ba) (ba) (ba) . . .
# # # desubstitution

. . . b b b . . .

However, from Lemma 1, it is known that . . . bbb . . . can not occur and so
we deduce that . . . a)(ba)(ba) . . . can also not occur.

It has thus been shown that neither ababa nor babab are subwords of
T M. ⇤

Lemma 3 : The aa, bb constraint on T M subwords

Any subword of the Thue–Morse word that contains five letters or
more, must contain aa or bb.
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Proof

With only two letters to play with, the only way to write down a subword
of length five without aa or bb occurring is to alternate the occurrences of
a and b. This can be done in two ways, either ababa or babab. However,
Lemma 2 tells us that neither of these is legal. Therefore any subword of
five letters must contain either aa or bb. Any subword of more than five
letters must contain five letter subwords. Such subwords must contain aa
or bb and therefore so must any subword of more than five letters. ⇤

Definition : Cube-free words

For a non-empty finite word u, let u0 and u
z

denote the first and last
letters of u, respectively.
A weak cube is a word of the form uuu0 (or, equivalently, u

z

uu).
A word w is strongly cube-free if it does not contain any weak cubes.

Theorem 2 : Strongly Cube-free

The Thue–Morse word is strongly cube-free.

Proof (by contradiction)

Let us assume the opposite of the claimed result, that the Thue–Morse
word, T M = w0w1w2 . . . , contains at least one subword, u, such that uuu0

is a subword of T M. Consider the minimal length of u and denote that
minimal length l. In other words, |u| = l. Clearly, u cannot be a single
letter a or a single letter b for then uuu0 would be aaa or bbb respectively,
both of which, from Lemma 1, are illegal. Nor can u be either of the double
letter subwords aa or bb for the same reason. So, the minimum length that
u can be is two and, even then, only ab or ba are possibilities. However, if u
was ab or ba then uuu0 would be ababa or babab respectively, both of which,
by Lemma 2 are illegal. So |u| � 3 and |uuu0| � 7. This implies that uuu0

can only be found in a Thue–Morse word of seven or more letters. The first
such word is T M3 = abbabaab. Notice that the occurrence of bb in this
word is at w1 and aa at w5. The manner of generating subsequent words
using

T M
n

= T M
n�1T M

n�1

means both that there will always be at least two aa or bb and that all such
occurrences are at positions w

x

, where x is an odd number. Now consider
the parity of l.
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CASE 1 : l is odd

If |u| = 3, then we can draw up the following table of u and uuu0 and
show by desubstitution that none of the six possible uuu0 can be in the
Thue–Morse word. Alternatively it can be seen by an inspection of the
Thue–Morse language table, given earlier, that none of these uuu0 are legal
subwords.

u uuu0

aab aabaaba
aba abaabaa
abb abbabba
baa baabaab
bab babbabb
bba bbabbab

For |u| � 5, we know from Lemma 3 that u contains aa or bb at least twice
(as indeed does T M). Where they occur in T M (and there will be an
infinite number of such occurrences) must be at odd positions. Thus the
distances between all occurrences of aa and bb are even. Crucially, one of
these distances must be l. However, we are looking at the case where l is
odd and so this contradicts that assumption. To summarise, the assumption
that l is odd has led to a contradiction and so that assumption cannot be
correct.

CASE 2 : l is even

Recall that in the Thue–Morse word deleting every other letter in
an odd position results in the Thue–Morse word. So if a subword u =
w0w1w2 . . . wl�1 (of even length) gives a uuu0 in T M then so too must
u0 = w0w2 . . . wl�2. This, however, is a shorter word, in contradiction to l
being minimal.

In overall conclusion, the Thue–Morse word is strongly cube-free. ⇤

Corollary : The Thue–Morse Aperiodicity

The Thue–Morse word is aperiodic.

Proof

This follows immediately from Theorem 2. ⇤
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Intuitive Understanding

The proof tells us that, given any piece whatsoever (of any finite length)
of the Thue–Morse word, that piece will never occur more than twice in
succession. It may well occur singly or as a pair an infinite number of
(spaced out) times in the word, but that is another story.
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Problem 314.1 – Cosines
David Sixsmith
The cosine formula

a2 = b2 + c2 � 2bc cosA, (1)

where a, b, c are the sides of a triangle and A is the angle opposite the side
of length a, is well known. Equation (1) can be written in a symmetric
‘Pythagorean’ form

a2 = (↵b+ �c)2 + (�b+ ↵c)2. (2)

An initial problem it to find ↵ and � as simple functions of the angle A. A
more di�cult problem is to find a direct geometric justification for equation
(2), in other words, a derivation that does not use the cosine formula. (I
have not had success with the latter.)

Problem 314.2 – Rational eigenvalues
Tony Forbes
For which positive integers a does the matrix

M =

2

4
1 1 1
1 2 a
1 b c

3

5

have non-zero determinant and rational eigenvalues for some positive inte-
gers b and c?
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