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calculations that comprise a true tour de force.”

“Martin is an adept writer and conveys intricate mathematical arguments in a
rigorous and thought-provoking way, with a flare for injecting a certain amount of
fun and whimsy, to which | took great pleasure when reading his dissertation.”

“Martin's dissertation was excellent and a joy to read, and really very impressive.
Quite apart from the excellent mathematical content, which was at times intricate
and fiddly (but precise and rigorous), and the original creation of a fractal out of
the Fibonacci word (including the use of excellent computer generated
illustrations to elucidate), what | noticed the most was the clear sense that Martin
was enjoying himself; Martin conveys to the reader the joy and excitement of
doing mathematics.”

“Many of the proofs in this dissertation were of Martin's own results, exploring

two extremely interesting geometric constructions. | particularly enjoyed that

Martin was able to reuse Lemmas and Propositions from earlier sections
throughout the dissertation, reinforcing that each section of the work is linked and
builds from one section to the next. This helped to shape an engaging anc
convincing narrative.”



Martin Hansen, The Open University, P502991(

Substitution
drawing rules
on the Fibonacci word

A Research MSc from The Open University (UK)

Martin Hansen

Substitution drawing rules on the Fibonacci word
~ A Research MSc from The Open University (UK) ~

Edition : Version 1.2 (Online Version)
Released Online "2April 2023
Martin Hansen
Shrewsbury
SY25DT
mhh@shrewsbury.org.uk
07841 288198 (text only)

Abstract

This paper is a sharp and focussed exploration of the Fibonacci substitution anc
the mathematical entity it gives rise to, the Fibonacci word. Our investigations are
both of an algebraic and a geometric nature. Indeed, it is the combination of the
two that gives this paper its overall character. The work is in four parts. Chapter 1
is a brisk tour of necessary basics; definitions, key theorems, and a number o
techniques subsequently used extensively. A simple one dimensional drawing rule
Is investigated in chapter 2 with the aid of what is thought to be an original
geometric figure that we will call a “deviation from zero diagram”. A highlight of
the chapter is its concluding elementary proof of a non-trivial result. Chapter 3
presents a two dimensional drawing rule. Although selected because it is amongs
the simplest form possible, this time the object derived from the rule is a fractal.
That this is so is proven and its fractal (Hausdorff) dimension calculated. This
fractal is a (possibly previously unexplored) variant of that known in the literature
as “The Fibonacci Fractal’. By way of an overall conclusion, the last chapter, the
fourth, suggests a few aspects of those preceding it worthy of further analysis.

Martin Hansen
The Open University
May 2022
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Symbols Used

In addition to standard mathematical notation and following symbols have a
particular meaning in this work.

Symbol | Meaning

A Alphabet : A set of letters

Dn Thent deviation from zero structure {s a catalogue entry).
dimsym Similarity dimension of a fractal

En A piece of tiling associated with an embedded word

I The Fibonacci word¥, = 6"(a)

Fi Fn with the leadingdba) removed;F, = (aba) Fn

| Fnl The number of letters in the wofh,

?n Displacement vector between the start and finish of the associated
F The infinite Fibonacci word

Gn A piece of tiling in a growth charh(s a catalogue entry)

La The length of a tile (til&, for example)

M & The incidence matrix (for the substitutidn for example)

U Fn with the last two letters exchanged, each with the other
W The Fibonacci wordf, with the two rightmost letters removed
Wn Displacement vector between the start and finish of the associateq
¢ The golden ratiop = %

A An eigenvalueApr is the Perron-Frobenius eigenvalue).

0 The Fibonacci substitutiom ab, b — a)

] An inflation mapping on tile lengths

O Denotes the end of a proof

path

path
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Chapter 1
The Fibonacci Word

1.1 Mathematical Beauty
Mathematics is often described by its practitioners as being beautiful. “Beauty”,
some say, “is in the eye of the beholder”. To me, mathematical beauty revolves
around simple ideas giving rise to interesting entities with visualisations that can
be sketched on paper and yet have extraordinary properties and depth. Over th
following pages a fascinating object, the Fibonacci word, will be explained and
explored. To set the scene and make this work self-contained, this first chapter is
a minimalist introduction to the Fibonacci word. This initial material is well
known. Of necessity, it begins with definitions of the objects of interest. These
definitions are deliberately paired down and elementary to make this work as
accessible as possible. Readers wanting a more technical treatment of th
foundations and to see how they are embedded in a more general context, ar
recommended to read, for example, the classic textbook by Pytheas Fogg
[Fogg]. The main contribution of this chapter to the established literature is to
string together snippets found in the standard works (for exai®ake]3], and
[ASh03]), and in the the use of a uniform notation and terminology. It strives to
enhance established explanations, to untangle dependencies, and to present
narrative that covers the key steps, stands by itself, and flows. This chapter is
sharply focussed on the subset of material needed to set up the Fibonacci wor:
ready for the visualisations to be explored in the subsequent chapters. That it
where the true beauty of the Fibonacci word starts to be revealed.

1.2 Definitions
By definition, aword is a finite or infinite sequence of elements, terretgys,
all of which are taken from a finite set calledaiphabet. In this dissertation we
work exclusively with the two letter alphabéd,= { a, b }. From this alphabet,
for example, the letters, b, a, a andb could be selected, in that order. Then, by
concatenation, the wordabaab formed. Concatenation is a simple placing of the
selected letters one after the other, working left to right, to form a word. Words
can themselves be concatenated. For exarabéeconcatenated witab again
forms the wordabaab. The interest here is not in forming words from a random
selection of letters from the alphabet but rather in starting with the simplest of
words, a single isolated lettex, and repeatedly applying substitution. In
general a substitution can be thought of as “a replacement rule”. Our interest is
in the Fibonacci substitution, denote®l Given a word, the Fibonacci
substitution replaces each occurrences of the lettéth the letter paiab and
each occurrence of the lettewith the lettera. Mathematicallyd is given by,

a— ab

b - a

When applied iteratively thrice to an initial letgrthe wordabaab is obtained
via the following steps,

a - ab — aba — abaab
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It could be written tha&3(a) = abaab, but we will write F3 = abaab because

the focus throughout this dissertation is entirely on the specific simple case of
the Fibonacci substitution being applied iteratively to an initial isolated &etter

By definition, then!™ Fibonacci word is given by,
Fn = en(a)

Table 1.1 shows an initial lettexr having the Fibonacci substitution applied
repeatedly, giving rise to the first few Fibonacci words.

n | Fn=106"@ lal | [o| | |7l
0| Fo=a 1 0 1
1 Fi=ab 1 1 2
2 | Fo=aba 2 1 3
3 3= abaab 3 2 5
4 F, = abaababa 5 3 38
5 F - = abaababaabaab 8 5 13
6 | ¥s=abaababaabaababaababa 13 8 21
7 | ¥ = abaababaabaababaababaabaababaabaab 21 13 34

Table 1.1: The Fibonacci substitution applied iteratively to an initial ledter

With any iterative process, any object in the nature of a fixed point is of interest.
With that in mind, notice that the wotH,, corresponding to any given value of

n, occurs at the leftmost end of all subsequent words. The infinite fixed word
that results as tends to infinity is known as théibonacci word, #, and has

been described as “one of the most studied examples in the combinatorial theon
of infinite words”[CRR14, page 40]

As table 1.1 suggests, successive Fibonacci wdfgs,have the number of
occurrences of the lettar which we will denotga/|, the number of occurrences

of the lettetb, denoted b|, and the overall word length#y |, all working their

way through the world famous Fibonacci number sequence which is presented ir
table 1.2. With a little thought it can be seen that the number patterns of table 1.1
arise directly from the Fibonacci substitutian ab, b — a) where each letter

in a previous word yields one lettarin the next, and, in addition, each letéer

in a previous word yields one lettein the next.

Position 0 1 2 3 4 5 6 7 8 9 10

Term 0 1 1 2|1 3] 5 8 13 | 21| 34 | 55

Table 1.2: The Fibonacci number sequence.

There is a remarkable relationship where any given Fibonacci word is the
concatenation of the two previous Fibonacci words;

Fn=Fn-1Fn-o forne Z, n > 3,
with F; = ab and F, = aba.
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In table 1.1, for example, notice that = abaab, 4, = abaababa and that¥s is

the concatenatiorff, F3 which is F5 = abaababaabaab. Respected authors,
such as Lothaire, take this relationship as the definition of the Fibonacci words
[Lot83, page 1Q]As an aside, notice that in principle this relationship provides a
computationally efficient way to generate the finite Fibonacci words up to any
givenn by repeated concatenation of two previous words.

A subword of the infinite Fibonacci word;, is defined to be any word that can
be found as a piece ¢f. Clearly, the Fibonacci word$,, are subwords of .

From studying# = abaababaabaababaababaabaababaabaab... it can be seen
that other subwords gf include, for examplehab andbaab.

We now define the infinite Fibonacci word's language to simply be all possible
subwords off . Table 1.3 lists the language's subwords up to six letters length.

length 1 2 3 4 5 6

aa aab aaba aabaa aabaab

ba baa abab abaab abaaba

F bab baab ababa ababaa
words baba baaba baabaa
babaa baabab
babaab

N° of words 2 3 4 5 6 7

Table 1.3: All subwords up to six letters in length in the Fibonacci word's language.

1.3 Two Key Language Exclusions
Intentionally, table 1.3 has been presented somewhat “out of the blue” and this
iIs because, whilst it gives illuminating hints of structure within the Fibonacci
word, a detailed derivation of it is not relevant to the aspects of the Fibonacci
word of interest in chapters 2 and 3. However, the fact that neither of the words
bb or aaa occur is of crucial importance and we now attend to a proof of this.

Lemma 1.1 : Exclusion from ¥ of bb
Of the four possible two letter subwords that can be formed from the letters
a andb all butbb are subwords of the infinite Fibonacci wof#,

Proof

Note thatbb does not occur iff,, F1, F» or Fa. Inspection ofF3 = abaab
reveals that the subwords of length two letters in the Fibonacci word's language
include ab, ba andaa. For the letteb to occur in a word subsequent fg it

must come from the part of the Fibonacci substitudons ab. Wheneverb
occurs in‘fn, with n > 3 it must be preceded by an Thus, in the Fibonacci
word's languagéhb can not appear as a subword in any word of any length.
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Lemma 1.2 : Word ending alternation ofab with ba

Forn > 1, the ending of the Fibonacci words alternates betaeemdba.
In fact, the Fibonacci wordF,, ends inab whenn is odd and ends ibha
whenn is even.

Proof

In general, if amt word ends imab, then the if + 1" word must end iraba
where thea on the end of then(+ 1" word is generated by the substitution
acting on the end of the n" word, and ther( + 1)" word's penultimatd is
generated by the substitution acting on the penultimafethent™ word. On the
other hand, if am™ word ends irba then the 1§ + 1" word will end inab, this
being generated by the substitution acting on theaenfl the n™ word. This
proves the first part of the Lemma, that for 1, the endings alternate between
ab andba. Now observe thaff; = ab. That is, F; ends inab, from which it is
deduced thaff, ends inab whenn is odd. By further deduction, because of the
alternating nature of the endingky, ends inba whenn is even. d

Lemma 1.3 : Exclusion from ¥ of aaa

Of the eight possible three letter subwords that can be formed from the
lettersa and b only aab, aba, baa and bab are subwords of the infinite
Fibonacci word. In particular the subwaada can not occur.

Proof

The eight possible three letter subwords referred tcaase aab, aba, baa, abb,
bab, bba andbbb. Of these, Lemma 1.1 excludes those viithas a subword,
leaving,aaa, aab, aba, baa andbab.

We will now prove thataa must be removed from this shortened list.
Clearly,aaa does not occur itf g =a orin ¥, =ab.

The basis for an inductive proof is established by noting that nefther aba

nor ¥, = abaab contain the subwordaa. Recall the property that any given
Fibonacci word is the concatenation of the two previous words. Our proof by
induction requires we assume that for any gifferwith n > 4, the two previous
words Fn_1 and Fn_, do not contairaaa. In forming ¥, the aaa can only
occur at the seam of the concatenation of the two previous words.

Let the symbol : denote that seam.
Case 1 The concatenation is a.: aa ...
This cannot happen as no word begins aéhthey all begin withab.
Case 2 The concatenationis aa:a...
This cannot happen as no word ends waéhthey all end alternatively
with ab andba, by Lemma 1.2.
By induction, the subwordaa cannot occur in any Fibonacci word.
Furthermore, witlaaa now also removed from the list, what remains is,

aab, aba, baa, bab.

Inspection off s = abaababaabaababaababa demonstrates that no further
words should be removed from the list. O
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1.4 Desubstitution

Lemma 1.1 and Lemma 1.3 provide simple examples of what is more generally
termedpattern avoidance. For the Fibonacci word it is said tHai andaaa are

illegal subwords. In fact there are infinitely many other illegal subwords of
However, thankfully, the Fibonacci subwords have a desirable property that
means the other illegals are not of particular interest here. This property results
in it being easier to work out the legal status of a subword when the need arise:
rather than have long lists of which subwords are, and which are not, legal. The
property is that of being readily amenable desubstitution. To explain
desubstitution it first needs to be understood that we will end up wanting to
analyse alleged pieces of the infinite Fibonacci word. Typically, it will not be
known exactly where in the word the piece to be analysed is located nor, indeed
if it is actually a legal piece of the Fibonacci word at all. Furthermore, if legal,
the piece could be in multiple possible locations, maybe even in an infinite
number of locations! Desubstitution provides a method of determining the legal
status of the piece. It is the act of inverse substitution; working out for a given
word, what previous word (or words) it could have arisen from.

Recall that the Fibonacci substituti@ms given by,
a— ab

b - a

where some colour has been added to assist with understanding a forthcoming
example. We can now reason that when desubstituting, anyldedteng with

the lettera that must be to its left, must have come from a letiara preceding
word. Once all of the occurrences @ have been dealt with, any remaining
occurrences of the lettarmust have come from a lettern the preceding word.

For example, suppose it is wishes to determine the legal status of the following
alleged piece of the Fibonacci word,

...abaabaababaabababa...

This would initially be scanned for any occurrencédlor aaa to check if it is
obviously illegal. As the word passes this initial scan the next step is to bracket
each occurrence of the lettealong with thea immediately to its leftlike this,

... (ab)a(ab)a(ab) (ab)a(ab) (ab) (ab)a...
and now the desubstitution can be made which reveals the previous word to be,

...ababaabaaab...

The illegal subwordhaa is now in the desubstituted word and so it is deduced
that the alleged piece of the Fibonacci word being analysed is also illegal. More
examples of desubstitution will be given in chapter 2. For now, note that if the
word obtained from an initial desubstitution does not conta#a the
desubstitution process is repeated until eit@e does occur, or a sufficiently
short enough word that is clearly legal is obtained. The process will, of course,
eventually terminate in one of these two situations because the length of the
word reduces each time a desubstitution is applied. The astute reader may b
wondering why, other than in the initial scan, a lookout for the illelgas not

being kept. This is becauseaaa... desubstitutes to eitherhhbb... or ..bba...

both of which contain the illegddb and so, when desubstituting, the illegal
subwordaaa will always be encountered in the desubstitution before the illegal
subwordbb can occur.
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1.5 The Incidence Matrix
In general, a substitutiom®, has associated with it a matrix termediitsdence
matrix, M. For the Fibonacci substitutiof, Mg is of great utility in
determining information about the relative frequencies of the letters in the
infinite Fibonacci word and also in suggesting a natural tiling geometry that
flows from that word. We'll look first at determining relative frequencies.

Here is a standard definition of what an incidence matrix is;

For a substitutiom acting on an alphabet = { a;, &, ..., an } of cardinalityn,
the incidence matrix is defined to be the n matrix M 4= (mrc) where my¢ is
equal to the number of occurrencesioin @ (ac) . (Taken from[GY21])
For the Fibonacci substitutiog,

a— ab o ) (11
b - a has incidence matriMy = ( 1 O)

In My the upper leftl indicates a single lettex in 6 (a) and the lower lefil
indicates a single lettérin 6 (a). Similarly, the upper right 1 shows there is one
lettera in 6 (b) and the lower right O that there was no lettar 6 (b).

To better understand how this carries information about the letter frequencies of
the Fibonacci words, consider the woffg = abaababaabaababaababa and
observe that, using the notation defined previolsiy= 13 and| b| =8.

6
11 ) _ ( 13 8

The connection WIU‘( 10 g 5

) Is suggestive of the following,

Proposition 1.1 : Powers of an Incidence Matrix

n
If Mg is the incidence matrix fab then M, is the incidence matrix fap".

Proof
In general, the matriM ¢, which is of necessity square, has the form,

| Mg Ny ... Mye ... Mhn
A Mpy NMhy ... My ... Mpn
Mg = =
O M1 My ... Myc ... M
an| Mhy NMhy ... Mg ... Mo

P(ag) P(@) .. P(a) ... P(an)

where @ is the substitution on an alphabét ={a,, ay, ..., a, ..., an}. The
scaffolding around the matrix (not routinely shown) is helping to illustrate that
thercth entry gives the number of times the letieoccurs in® (ac) whereac is
thect letter in 4.

In the square of this matrix the!" entry is given by the scalar product of tHe

row with thect" column;

2
M@ (Myc) = MyiMyc + MyoMpe + ..o + MycMye + ... + MypMic
which will be the number of times the letegroccurs inqbz(ac).
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This establishes a basis for a proof by induction for thercas2 in M 25.
For the inductive step, assume thatrfark for some integek > 3, thercth entry

of M (lz() gives the number of times the let&groccurs Ii(ncbk(ac) .Taking the scale
product of the™ row of M gwith theccolumn ofM ¢ gives how often the lett

. k
ar appears TU 1(ac). So, thercth entry ofM ¢+1represents the occurrences

theal” letter in@** Y(ag) . By induction M} is the incidence matrix fap" O

The major implication of linking an incidence matrix to the Fibonacci word is
that results from Linear Algebra can be utilised. In particular, the incidence
matrix of the Fibonacci substitution has the desirable property of being
primitive. By definition, a real matriM is primitive if it is non-negative and its

mth power is positive for some natural numib&rThat is, all entries o™ are
strictly positive for somen e Z". As it stands, the incidence matrix for the
Fibonacci substitution is non-negative as required but the zero in its incidence
matrix is an initial cause for concern! However, it is primitive because, for
example, its square is strictly positive;

2
11} (21
[16) = (33
A substitution with a primitive incidence matrix is itself termed primitive. The
incidence matrixM, of a primitive substitution has the marvellous property of
having a strictly positive simple eigenvalues. In absolute valuélpg is strictly
the largest eigenvalue bf, a fact that is a consequence of the Perron-Frobenius
theorem. Se@Q95, page 132for a proof. Additionally Apr has an associated
eigenvector with strictly positive entries. For an infinite fixed point of a
substitution, provided it is a primitive substitution, the relative frequencies with
which the various letters occur exist. Furthermage,is the key to determining
their values. So, what are the relative frequencies with which the letterdb
occur in the infinite Fibonacci word: ?
To answer this question, note that the Fibonacci substitution's incidence matrix
has characteristic polynomiaﬁl2 - A —-1 =0, yielding Apr = ¢, where ¢
denotes the golden ratio, an irrational number that has an exact value of,
1++5
>

The relative letter frequencies are given by a right eigenvex;tcbe for Apr,
with sum of entriesx + y = 1.

Solving under these constraints yields,

X

relativefrequency(a) = ¢ — 1 (About 61.8%)

e

relativefrequency(b) = 1 — % = 2 — ¢ (About 38.2%)
PF

<
Il

Usefully, the ratio of|a| : |b| can be written as being precisely 1 and from
this follows a straight forward proof that the Fibonacci word is non-periodic.
This is presented next as Proposition 1.2.
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Proposition 1.2 : Non-Periodic Nature of the Fibonacci Word
The Fibonacci word with letter ratipa| : | b| of ¢ : 1 is non-periodic.

V5

L N : 1+
The golden ratiog, is an irrational number with an exact vaIue—efT.

Proof
Assume that the Fibonacci word is strictly periodic in which case there would be
some partitioning of the word along the lines of, for example,

(aba...ab)(aba...ab)(aba...ab)(aba...ab) ...

Within a partition, let the number occurrences of the ledtdre p and the
number of occurrences of the lettebe g and note that from this construction
bothp andqg must be positive integers.

The ratio of the occurrences of the two letters is thus given: loy

More revealingly, this ratio can be expressedgas 1with p,g e ZT

A direct comparison is now made with the letter ratib of the Fibonacci word

B, is, from the definition, a rational number, and so cannot ggual

Therefore the Fibonacci word, as claimed, must be non-periodic. O

Proving the Fibonacci word is non-periodic is not enough to also claim that it
has an aperiodic structure. To be aperiodic, we must rule out the possibility that
the Fibonacci word contain an arbitrarily large periodic part. By way of
explaining the need for this exclusion, consider the word that starts with, five
then alternates betweérthena ad infinitum;

aaaaabababababab...
This is non-periodic but no more interesting than if it were. It is non-periodic via
an annoying technicality! To show that the Fibonacci word is not of this nature it
needs to be demonstrated that it does not contain arbitrarily large periodic parts
which is what would makes it, by definitiomperiodic [Wik21a]. In 1983
Juhani Karhumaki, as part of a more general result, proved that in the Fibonacci
word no subword can occur more than three times in succégsid8]. This is
the property that makes the Fibonacci word so mathematically intriguing.
A further subtlety, that will be encountered in chapter 2, is that any given
subword of F will occur an infinite number of times. This makes the Fibonacci
word an example of aecurrent word [Lot02 page 31] Table 1.4 provides
examples of a recurrence, a square and a cube in the Fibonacci word.

‘F = aba abab aaba abab a abab aaba abab aaba...
F = abaababaa baababaa babaabaababaaba...
‘F = abaababaa baaba baaba baaba ababaaba...

Table 1.4 :Upper : Any subword of the Fibonacci word, suclalab, occurs an infinite number
of times but not more than three times in succession.
Middle : The squardgaababaa occurring twice in succession in the Fibonacci word.
Lower : The cubehaaba occurring thrice in succession in the Fibonacci word.
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1.6 An Associated Tiling Geometry
The Fibonacci word can be visualised as a one-dimensional tiling. In striving to
find a tiling that is faithful to the word, two lengths of tile would seem logical,
tile A of lengthL, representing a lettex and tileB of lengthLg representing a
letter b. The inflation mapping®, needs to inflate tilé to have a length that is
the sum of the lengths of a tifeplus a tileB and also inflate tild to have the
length of a tileA. The tile length inflation geometry 6f can be summarised in a
manner that makes a correspondence withvious, namely;

LA—) LA+|—B

LB —> LA
Previously, in our work of relative frequencies, it was the right eigenvector of
the incidence matrix that yielded the frequency information. In general, it turns
out, however, that when an associated geometry is sought, it is the left
eigenvector that is required. The eigenvalue required is dgam¢ because
this is the only eigenvalue with a modulus greater than unity, and so able to
yield the desired expansive mapping. If we arbitrarily assign a length of 1 to tile
B, then tileA will be of length¢. Figure 1.1 gives a summary of the resulting
inflation mapping.

¢ ¢
A —> @

R 1
A

»
- @?
A

Figure 1.1: A summary of the inflation mappin@®, associated with the Fibonacci word.

To conclude this chapter, figure 1.2 presents the first few Fibonacci words as
one-dimensional geometric tilings &". The lengths are drawn to scale and
they have been given an arbitrary width in order they be seen.

Fir—T—

Fai 1 |

Fsi 1 | ]

Fai 1 | 1 1 |

Fs| 1 | 1 1 | 1 | ]

Figure 1.2: The first few Fibonacci words represented as tilings on a line segment.
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1.7 Author's Notes on Chapter 1

The definition of mathematical beauty that launches the chapter is intended to be
provocative, and is somewhat tongue in cheek. I'm very aware of the joy that
mathematicians experience when working only with symbols, effortlessly
moving around a topic area with which they are highly familiar, bending it to
solve a problem or construct a proof, and without any recourse to a physical per
and paper diagram. That this beauty is hidden to those outside of mathematic:
prompted Samuel Eilenberg at Columbia University to once remark that,
“Mathematics is a performance art, but one whose only audience is fellow
performers’ [PM16]. Possibly, this is a little less so since the advent of personal
computers in the 1980s and the spectacular visuals associated with som
branches of mathematics, in particular fractal geometry and the Mandelbrot set.

An earlier version of this chapter contained several proofs concerning the
structure of the Fibonacci word; that it is Sturmian, for example. However, | felt
that the overall effect was a loss of a clear direction, and so they were ruthlessly
removed to sharpen the focus upon what was necessary to prepare th
groundwork for the remainder of this dissertation. In a similar vein there was felt
to be no need to introduce left, two-sided, or periodic fixed points.

Doorways to mathematically deep waters abound in this material. For example,
when analysing words that arise as the fixed points of substitutions under
iteration, just how effective desubstitution can or can't be is termed
recognizability, and is an active area of current research. See, for example
[Kyr19, Chapter 3] Pattern avoidancas a general phenomenon is another
example of a vast subject area in which active research is ongoing. See, foi
example[Ram04] [Ram12]

My initial understanding of the material covered in this chapter stems from The
Open University's topic guide (not available outside of the University) to their
courseAperiodic Tilings and Symbolic Dynamics, written by Reem Yassawi and

the late Uwe GrimniGY21].

I would like to thank Dan Rust of The Open University for his valuable
comments on an early draft of this chapter and in particular his recommendation
that | wield an editor's knife to remove that which didn't need to be there.
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Chapter 2

lterated Function System Drawing Rules

2.1 Mathematical DNA
One of the wonders of the modern age is the discovery that each living creature
has the blueprint of its construction, development, function and reproduction
within itself, in each of its cells in a molecule called DNA. In essence this long
molecule, twisted with an antiparallel copy of itself as a double helix, can be
represented as a one-dimensional string of letters. The letters represent the fo
different basic units of DNA, the nucleotides with a base of either thymine,
adenine,A, guanine,G or cytosine,C. In figure 2.1 an example of a DNA
segment is given. It is the sequencing of these four letters, over three billion of
them in human DNA, that is the biological code at the centre of what a creature
is and can become.

ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAAGAACCGGC
Figure 2.1: An example of a segment of DNA

With the foregoing in mind, it's reasonable to wonder if the Fibonacci word can
be used as the code to produce another mathematical entity. Indeed, that i
exactly that was achieved in chapter 1 with the Fibonacci words being viewed as
tilings of line segments. Rather than that being the end of the matter, this chapte
will take the idea forward with some further exploration of the idea.

In biology the concept of a string rewriting system is attributed to Aristid
Lindenmayer. This Hungarian biologist sought a method to describe elementary
plant development, publishing his thoughts in 196868]. Today referred to
asL-systems, their grammarg, is a collection of the following three parts;

¢ An alphabety, of symbols.

e A string of symbolsy defining the system's initial state.

e A set of production rule$, specifying how a next string is produced

from a previous string.

By repeatedly applying the ruleB, anL-system generates a sequence of strings
in a similar fashion to the generation of the Fibonacci words where,

G=VNoP =(4a0)
and whereA={a, b}, o ="“a” andé is the substitutiom — ab, b — a.

In 1986, the Polish computer scientist Przemyslaw Prusinkiewicz formalised the
mathematics ofL-systems and the interpretation of the strings as drawing
instructions for a “turtle”, the on-screen drawing pen controlled by a computer
running the 1980s popular programming language LQ&@B6]

The enthusiasm at the time was to prodinaetals following the publication in

1982 of Benoit Mandelbrot's “The Fractal Geometry of Nat{iv&in82]. In this
chapter the Fibonacci words are interpreted via a one dimensional drawing rule.
The resulting visualisations are not thought to have been seen or explored
previously. They give intriguing methods of revealing aspects of, and
symmetries within, the Fibonacci words.
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2.2 The To and Fro Drawing Rule
Essentially, the_-system iterative generation of the Fibonacci word was taken
care of in chapter 1. Attention here can focus on drawing rules. Table 2.1 gives
the first rule to be considered. It produces, from a new perspective, the tiling of
section 1.6 alon®R*. This could be regarded as an identity drawing rule.

Symbol Action
a forward ¢
b forward 1

Table 2.1: Identity drawing rule

By adding a simple about turn to the midpoint of ehctile the to and fro
drawing rule of table 2.2 is created. This rule is believed to be previously
unexplored and is what we shall focus on throughout this chapter.

Symbol Action
a forward ¢
b forward 0.5, turn 189 forward 0.5

Table 2.2: To and fro drawing rule.

When the to and fro drawing rule is applied to the Fibonacci word apeaited
results that repeatedly overwrites itself on a one-dimensional line. To see what is
going on, figure 2.2 makes use of the otherwise vacant second dimension, givinc
adeviation from zero diagram. It shows the rule applied & giving a tiled path
running fromA to B. Each tile has &ontrol point at its midpoint, added to
enhance the ease with which a reader can see what is going on. As the pat
descends in a zigzag fashion artificial regions are created, coloured purple.
These are bounded by the path and an artificatis (shown red) and give an
impression of how much each zig and zag swings away from the origin.

0 2 4

~t i
| |

1 22 61 25
Figure 2.2: The %, deviation from zero diagram from the to and fro drawing rule. To see the
back and forth motion along a one-dimensional line the path is presented as a two-dimensiona
zigzag. The numbers at the foot of the diagram tally the number of tile control points at each
possible value of that such points occur. Originally, it was intended to explore the mathematics
of these tallies but that become sidelined as interest shifted to the swings back and forth abou
the artificialy-axis. The control point tallies have been left in for a possible future analysis.
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A striking feature of figure 2.2 is that, with the last two tiles greyed out, the

deviation from zero diagram has reflection symmetry in the mirror shown as a
broken line. Such a line must pass through the cebttid¢ of apalindromic

word. Table 2.3, below, suggests that palindromic words feature in all Fibonacci
words, some with a central letterothers with a central lettef and some with

an empty central letter. The words are coloured to highlight these observations.

Fn = 6" (a)

Fi=ab

F,=aba

F3=abaab

F 4 = abaababa

F s = abaababaabaab

T = abaababaabaababaababa

F, = abaababaabaababaabahaabaababaabaab

Table 2.3: The last two letters of each Fibonacci word shown are greyed out.What remains is a
palindrome in one of three types in a repeated modulo 3 sequence of an empty central letter, the
a central lettea, then a central lettd.

Lemma 2.1 : Palindromic Nature of The Fibonacci Word
Fibonacci wordgf, with the last two letters removed are palindromiz, 1.

Proof

Let Wp, be the Fibonacci worF, with the last two letters removed foe 1.
ThenW, is the empty wordJ}, =a andW; = aba which are palindromes.
We thus have a basis for a proof by strong induction.

Assume whem < k for some constark> 3, 7/ are palindromic.

Consider the finite Fibonacci worflk. ; and recall that,

Frer = Fk Fk-1
= j:k—l?-k—zg:k—l

The Fibonacci words, as observed previously in Lemma 1.2, end alternatively
with the letters pairab andba.

Case 1 k_ends inab in which casefk_», ends inba and so,

Fker = Wi_1(ab) Wi_2(ba) Wk_,(ab)

Wiki1 = Wk_1(ab) Wx_,(ba) Wx_, which is a palindrome
Case 2 k_1ends inba in which casefk_», ends inab and so,

Frsr = Wi_1(ba) Wi_,(ab) Wk_1(ba)

Wiki1 = Wik_1(ba) Wx_,(ab) Wx_, which is a palindrome.

In both casesk, 1 is a palindrome.
By strong induction the proof is complete. O




20

Substitution drawing rules on the Fibonacci word

Lemma 2.2 : The Central Letter of a Palindromic Word

Let W/,, be the Fibonacci worff , with the last two letters removed> 1.
By Lemma 2.1/, is a palindrome.
Furthermore, the central letter of this palindrome is,

e emptyif n=1 (mod 3)

ea if n=2 (mod 3)

eb if n=0 (mod 3)

Proof

For F, = ab, W, is empty and so has an empty central letter withl (mod 3).
For F, = aba, W, = a and so has central let@with n= 2 (mod 3).

For F3 = abaab, /5 = aba and so has central letlewith n=0 (mod 3).

The above three statements establish a basis for an inductive proof.
Assume whem < k for some constark > 3, W) has an empty central letter
whenk= 1 (mod 3), a central letterwhenk =2 (mod 3 ) and a central letter
whenk= 0 (mod 3).

Consider the construction used in Lemma 2.1, namely,

Fri1 = FxFk-a
= Fk-1Fk-2Fk-1
= Wi_1(w) Wi_, (W) Wi_3(ab)
Wiir = Wi-1(u) We_2(vu) Wi,
whereuv is a letter for letter replacement for oneabfor ba.

This shows that the palindron¥d/i . , has the same central letterdg_»
Strong induction now completes the proof. O

From a broader perspective, Lemma 2.2 can be viewed as a consequence of lor
established theorems from the number theory of Fibonacci numbers. One
relevant result is that the Fibonacci number sequence madsilperiodic. The
length of the period modulois denotedz(n). It is termed thet" Pisano period
[Wik21c]. The fact proven in Lemma 2.2, that the central lettertf,
repeatedly cycles through three possibilities, stems fr(@n= 3.

An implication of Lemma 2.2 is that, aftéfs, the next Fibonacci word with
mirror symmetry through B tile is F¢ and figure 2.3 suggests this is so, subject
to checking the “in between” deviation from zero diagramgffpand .

A little thought, as captured by figure 2.4, indicates that in order to be,

e palindromic

o without the illegal doubl® or triple A tiling combination
they will have to have half turn rotational symmetry about either the empty
central tile or the centrah tile (and thus, in both cases, not have mirror
symmetry). Figure 2.5 show$; where the half turn rotational symmetry is
centred on thezero deviation line. This is the line of the artificiay-axis
representing the origin ®*. Figure 2.6 show$ g and again, as expected, it has
half turn rotational symmetry but this time not centred on the zero deviation line.
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Figure 2.3: The deviation from zero diagram féfs, under the to and fro drawing rule. Like
that for F¢ (figure 2.2) it has a line of mirror symmetry through a central lditerf its
corresponding palindromic word¥y).
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Figure 2.4: The possibleonfigurations at the centre of the palindromic world§,, associated

with the Fibonacci wordsfp.
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Figure 2.5: The deviation from zero diagram f@f, under the to and fro drawing rule with the

W5 centre, corresponding to an(mod 3)= 1 case (figure 2.4) highlighted in orang®/; has
half-turn rotational symmetry about its centre which is on the zero deviation line (shown red).
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Figure 2.6: The deviation from zero diagram f@k under the to and fro drawing rule with the
Ws centre, corresponding to an(mod 3)= 2 case, (figure 2.4) highlighted in orangd/s has
half-turn rotational symmetry about its centre but, unlike figure 2.%fothis centre is not on
the zero deviation line (shown red).
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2.3 About The Zero Deviation Line

The to and fro drawing rule was so named because of the manner in which the
one-dimensional path swings repeatedly from one side of the origin to the other
then back alondR. It's natural to wonder how far away from the origin it can
swing and what are the characteristics of the possible deviations away from the
origin. To get a feel for such “bigger picture” questions, we need to look at
longer Fibonacci words as, with iteration in general, emergent behaviours are
not necessarily obvious from the first few iterations of the system. The deviation
from zero diagram forf; (a “longer word”) is given in figure 2.7 where the
individual tiles and control points are no longer shown, only the areas enclosed
by them and the zero deviation line.

y

Figure 2.7 : The deviation from zero diagram féf;; under the to and fro drawing rule. This
was drawn by a computer running the LOGO programming language. Samples of the code
written are presented in Appendix A.
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At first sight, figure 2.7 looks complicated but once the seemingly different
structures within it are isolated, there are remarkably few. These are given in our
next diagram, figure 2.8, and each assigned a catalogue identifier.
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Figure 2.8: All five of the seemingly different structures evident in the deviation from zero
diagram for#, under the to and fro drawing rule.

|

One could be forgiven for expecting more complicated structures to start to
occur as the length of the Fibonacci word increases. Pondering figure 2.8,
however, suggests an alternative viewpoint; what is emerging is an ever larger
piece of a single structure.

The realisation there may only be a single fundamental structure underpinning
all of the Fibonacci words rather begs the question of why some other structures
have not appeared and, indeed, why they cannot do so as the word length i
increased further. Figure 2.9 gives an example of a simple structure that has no
occurred in any of the deviation from zero diagrams up to and inclyfing

So, will this specific structure eventually pop up in a Fibonacci word, one not

yet investigated, or can it never occur?

)

) (

* .aabababaa..
—F, Ll oLl

..ba a aba..
Figure 2.9: Desubstitution shows thdt; is an excluded structure that can never occur.
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(

The key to answering the question is to desubstitute the part of the word
associated with the structure. This desubstitution process was described earlie
in section 1.4. Here it giveshaaaba... as the previous word. The tripkeis

illegal and the inescapable conclusion is that this structure can never occur.
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A piece of word associated with a structure, or a proposed structure, will be
referred to as arembedded word. This is because, when desubstitution is
applied, it may be necessary to speculate upon what the letters immediately
before or after the embedded word might be. It does not necessarily have a fixec
start or finish. A desubstitution may need to be applied repeatedly to determine
the legal status of an embedded word. For example the embedded word
...aababaabaabaaba... after two successive desubstitutions is shown to be illegal
because it would have had to come from a word with the illegal @ijheit.

Figure 2.10 provides the details.

.aababaabaabaaba..
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Figure 2.10: It takes two successive desubstitutions to show this structure can never occur. The

a a

b
alter the letter at that end of the desubstituted word; oneabah could be in that location.

brackets(a) are used to show that the letter immediately to the right of the embedded word could

Figure 2.11 gives an example where it takes three successive desubstitutions t
show that the embedded wor@ababaababaababaaba... is illegal.
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Figure 2.11: It takes three successive desubstitutions to show this structure can never occur.

Desubstitution provides a mechanism to test proposed structures for their
legality. When applied, its effectiveness when dealing with the Fibonacci word
stems from the fact that the possible desubstitutions are often unique or only
uncertain at one end. This may not be the case with other substitutions.
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2.4 Charting Growth

The desubstitution method described in section 2.3 can be thought of as a “tof
down” method of analysing a proposed structure's legality. However, it's a
“stabbing in the dark” method of trying to find structures. They need to be
guessed first, then their validity checked via desubstitution. A more systematic
approach to producing a catalogue of structures is to work “bottom up” and
produce agrowth chart of all the ways in which structures can legally be
constructed. Figure 2.12a shows the start of a methodical, thorough and robus
search for all possible deviation from zero structures.

|g0\l,g%E@1
2 Q)? l S ; .g. — .g‘;

G2 Gs
eﬁﬂﬁ -
Dy : 3
{
Dy
TUE F:o:g ' Gs :Oﬁ -9
—o— ®

==
D G
) o o
Go

Figure 2.12a: The start of the growth chart, mapping all possible deviation from zero structures
of less than thirty tiles.

Rather than add one letter and its associated tile each time, the growth char
speeds the process up by adding either three or five. This relies on the fact tha
the Fibonacci word can be factorised in the following manner;

F = (aba)(aba) (baaba) (aba) (baaba) (baaba) (aba) ...

where the only factors involved aaba or baaba. Observe that in the growth
chart when moving from one diagram to the next either theAi#&sor BAABA

has been added to a previous tiling path (once past the initial terms). The
factorisation guarantees that one ABA or BAABA can always be added.
Occasionally both are valid which gives branchingzatfor example.
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The growth chart shows that the structures already observed in figure 2.8 (thai
is, D1, D,, D, D4andDs) are the only structures of less than thirty tiles that
can exist. As the arrow at the foot of figure 2.12a indicates, the growth chart
continues. Before presenting the extension, it was felt to be prudent to prove the
claimed factorisation of the Fibonacci word. There is considerable literature on
the topic of factorising words similar to the Fibonacci word. For example, Amy
Glen's 2006 PhD thesis is devoted entirely to various decompositions of words
(with similar properties to the Fibonacci word) into factors, with an emphasis on
palindromic factorisationgsle06]. However, for our modest needs, at this stage,

a less general and more targeted proof will suffice.

Theorem 2.1 : Theaba, baaba Factorisation of F
The Fibonacci word can be factorised into the form,

F = (aba)(aba) (baaba) (aba) (baaba) (baaba) (aba) ...
where the only factors involved aaba or baaba.

Proof

First observe that all occurrences difagba) can be further factorised as
(ba)(aba) and that this is an unambiguous reversible piece of algebraic
manipulation within the context of the Fibonacci word where the leftmost factor
is anaba. Thus the claim is equivalent to proving that,

F = (aba)(aba) (ba) (aba) (aba) (ba) (aba) (ba) (aba) (aba) ...
where the only factors involved aaba or ba.
All Fibonacci words,F, begin withaba for n> 2.
Let ¥y be Fp, with that leadingaba removed fon > 2.
Inductive baself; = (ab), ¥, = (aba) and F, = (aba)(aba)(ba).
Assume whem < k for some even constakt 4, Fi (and hencefy ) factorise
as claimed.
Case 1 Feven

Friz = Frer Fk kis even
= Fk Fk-1 Fx
= FkFx-2.. Fo FaF2 F1 Fx
= Fk Fi-2... F2 (ab) (aba) Fk
= Fk Fi-2... F2 (aba) (ba) Fk
Case 2 Fomp
Fre1 = Fx Fr-1 k is still even
= Fk Fk-2Fk-a.. Fe FaF2 Fr
= Fk Fk-2 Fk-4... F2 (ab)

The result for Feyen Now follows by strong induction and fgf opp the words

factorise as required except for a factor @b)(at the end of each word. The
infinite Fibonacci word is the word formed as— <. and so, in the limit, all
words factorise as claimed. The proof of Theorem 2.1 is complete. O
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When working with an embedded word, there is ambiguity over whether the
extension to the right of the word, which will always end veaita, is followed

with an aba or baaba and so desubstitution is deployed each time the word is
extended to determine which is legal. In fact, on occasion disattand baaba

can be legal extensions to the word, and hence give two valid extensions to the
associated tiling path. This gives rise to the branching phenomenon observed ir
the growth chart. However, by Theorem 2.1. at least one will always be legal.
Any illegal case always leads, via desubstitution, to the iliaggal

Everything is now in place to extend the growth chart started in figure 2.12a,
and this extension is presented over the next few pages.

—o——o—ry
o

= Z
- ¢ 3 GI; e,
€ i_;_? = i_;_? |
Gis

Figure 2.12b: The continuation of the growth chart started in figure 2.12a.
A further continuation is in figure 2.12c.
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Figure 2.12c: The continuation of the growth chart from figure 2.12b.
The next continuation is in figure 2.12d.
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Figure 2.12d: The continuation of the growth chart from figure 2.12c.
It shows the deviation from zero structube,

The growth chart presented across the four figures 2.12a, 2.12b, 2,12c and 2.12
has determined all possible deviation from zero structures up to the 67 tiles of
D and the 64 tiles ofy ,,. The growth chart could be continued further. In fact,

it would seem likely that the aperiodic nature of the Fibonacci word guarantees
it will continue indefinitely. All the structures found continue to suggest that
they are simply increasingly large chunks of an underpinning single structure.

2.5 Exploring then =0 (mod 3) Case

Two facts that give rise to some speculative thoughts are, firstly, that for the
Fibonacci wordsFn with n= 0 (mod 3), the associated palindromic wofd4,

have mirror symmetry about a centBatile. Secondly, as all words start on the
zero deviation line, the mirror symmetry guarantees #atwith n=0 (mod 3)

will end on it too. In consequence, with the tiling path thus pegged to the zero
deviation line at either end, it is reasonable to postulate that the maximum
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deviation away from the zero deviation line is predisposed to occur somewhere
towards the centre of the word. As noted in figure 244, with n= 0 (mod 3)

has a central tiling configuration oABA. Theorem 2.1, theaba, baaba
factorisation of F theorem, can now be applied. Some care is needed, as the
ABA matches up to amba in  that is at the right hand end of a factiosigpa).

The aim now is to produce a growth chart, moving outward from the ceb#ral

and figure 2.13 is the result.

Figure 2.13: The tiling growth chart, moving outward from a cent’BA, where it is
reasonable to speculate the maximum deviation away from the zero deviation line occurs.
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From figure 2.13 it is immediately obvious that this is, by far, a most efficient
way of determining the possible deviation from zero structures that can occur. In
producing figure 2.13, the tilings were first worked out in words. In practice, at
each step, it was easiest to work out if the next factor to the right showldahe (

or (baaba) and then add the letters to the left that kept the required mirror
symmetry. The bracketing of the factors when extending to the left is not always
immediately obvious until a subsequent step has been taken. Desubstitution is
used to ensure the legality of each step of the growth.

b
aba
a)(baaba)(aba)
a)(baaba)(baaba)(aba)(baaba)
aba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)
a)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)(aba)
aba)(aba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)

a)(baaba)(aba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(aba)

Figure 2.14: The first few stages of the tiling growth chart (of figure 2.13) moving outward
from a centralABA, but in words rather than tiles. How the words extend was determined first,
then the growth chart tiling drawn. This was because desubstitution needed to be repeatedly use
to check which of the two possible extensions to the right was the legal one.

From how the growth chart has been constructed, or simply from looking at the
tilings (figure 2.13) or the words (figure 2.14) it is clear that what is being
"crawled along" with the extension to one end and its palindromic reflection to
the other, is a piece of the fixed point of the iteration. This is not a surprise once
it is noticed that,

Fam = Fam-1 Fam-2 me Z, m>1
= Fam-2 Fam-3 Fam-2

This shows that a previous word of the foffg for n= 3 (mod 3) is contained
centrally in a subsequent word of that same form. In fact, because of the iterative
nature of the process, it is contained centrallalinsubsequent words of that
same form. Figure 2.15 depicts some specific examples: ¥4 F3 Fa

Fo=F71F6F7 and F1o = F10 Fo F10. Colour and superposition are used to
show the relationship between them. As figure 2.15 suggests, these separat
results can be nested and we can write, for example, that,

,{]:12: 71077?49:37477710

This discussion readily generalises and is succinctly summarised by Lemma 2.2
as a formal result which will prove useful in the next section.

Lemma 2.3 : Centralised Recursive Embedding of 5

Fam = Tam—zfsm—s---.']:?.']:zl(fs) FaFr... Fam-s Fam-2 meZ"

Proof

As this is a straight forward proof by induction, it is left as an exercise for the
interested reader. O
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Figure 2.15: An illustration of how the shorter words appear at the centre of subsequent words
when working only with wordgf, wheren = 0 (mod 3). Sometimes the tiling path associated
with a word needs reflecting before being overlayed. When such reflections are needed will be
explained later. Colour is used to show howfirp the previous word¥ 3, F¢ and Fy occur.

One could say thaf; is embedded i which is embedded iffg which is embedded iff ;.

This figure was drawn by a computer running the LOGO programming language (Appendix A).
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2.6 How Far From the Origin ?
For this final section of chapter 2, we return to a question raised earlier
regarding how far from the origin the zigzag path can go. From a broad
perspective, given that the Fibonacci word is aperiodic, it can be argued that,
given any distance from the origin, the path will eventually exceed that distance.
This is because being aperiodic means there can be no extended periods ¢
repetition, no arbitrarily large periodic parts. This is seemingly at odds with the
deviation from zero diagrams which have revealed a path having a nature thai
seems somewhat hesitant in moving away from the zero deviation line. The
question is thus morphing into one about what mechanisms cause the wanderin
to, overall, have a maximum deviation away from the line that moves ever
outward as tha in F,, tends towards infinity. One key idea is to determine if a
Fibonacci word represents direction reversal or direction sustain. In other
words, does it set up a subsequent piece of path to initially progress in the samu
direction or the opposite direction? Figure 2.16 gives two examples one with a
direction sustain and one with a direction reversal.

Figure 2.16:
To the left isFs which sets up the next piece of path to flow in the same direction.
To the right is7; which sets up the next piece of path to flow in the opposite direction.

Clearly, a word will represent a direction reversal if there are an odd number of
the “about turn” instruction. That is, an odd number of |dtterthe word. It has
already been observed (in table 1.1) that the number of kettea word is in

the Fibonacci number sequence and so, by considering this modulo 2, it is
revealed if any given Fibonacci word represents a direction sustain or direction
reversal. Table 2.2 shows the pattern that emerges.

Word Fi ¥ Fs Fa Fs Fe Fr
N° of b 1 1 2 3 5 8 13
N° of b (mod 2) 1 1 0 1 1 0 1
SorR R R S R R S R

Table 2.2: Fibonacci words are one of either direction susfainr direction reversaR.

As the number ob in a word is the sum of the numberloin the two previous
words, the simple rules for combining odd and even numbers under addition
guarantees thaffis a direction sustain word whem= 0 (mod 3) and a
direction reversal word otherwise.
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The second key idea is to determine the overall one-dimensional vector

5
displacement/f,, between the start and finish of the path associated %ith
relative to its initial direction. Recall, aatile has lengthy, the golden ratio.

For a word¥, with n= 0 (mod 3), the associated tiling path fid/,, has to both
start and finish on the zero deviation line. This is because it's palindromic with
mirror symmetry about a central letterThe fact that words with= 0 (mod 2)
end inba and words witm= 1 (mod 2) end imb give us, in combination. that,

— + ¢, Qustainfor n=0 (mod 6)
Fn = forn

= 0 (mod 3)
— ¢, Qustainfor n= 3 (mod 6)

Figure 2.17 shows the four possible situations that can arise.

3&@:--- :kmlll ...:jc .:jc
EIO:--: EZO::O:--.- :..:013 . .:0::023
i — ' &
n = 0 (mod 6) n = 0 (mod 6) n = 3 (mod 6) n = 3 (mod 6)
Initial Face Right Initial Face Right Initial Face Left Initial Face Left
+¢ ustain —¢ Sustain + ¢ Sustain —¢ Sustain

Figure 2.17: The four possible displacements relative to the initial direction £00 (mod 3).

For a word¥, with n= 1 (mod 3), the associated tiling path fid/, has to both

start and finish on the zero deviation line (because it's palindromic with half turn
rotational symmetry, and has centre on the zero deviation line about a central
empty word flanked on either side by @n This time, drawing on the fact that
words withn= 0 (mod 2) end iba and words witm= 1 (mod 2) end imb give

us, in combination, that,

s + ¢, Reversal for n=1 (mod 6)

Fn = forn = 0 (mod 3)
— ¢, Reversal forn=4 (mod 6)

Figure 2.18 shows the four possible situations that can arise.

n = 1 (mod 6) n = 1 (mod 6) n = 4 (mod 6) n = 4 (mod 6)
Initial Face Right Initial Face Right Initial FaceLeft Initial Face Left
+¢ Reversal — ¢ Reversa + ¢ Reversal — ¢ Reversd

Figure 2.18: Thefour possible displacements relative to the initial directiomferl (mod 3).
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All of the pieces are in place to work through an example that keeps track of a
specific tiling's progress away from the zero deviation line by looking at a
special decomposition of the word associated with that tiling.

The focus is upon words of the forfi, with n= 0 (mod 3) to which Lemma 2.3

on the centralised recursive embeddingFfafcan be applied.

As an example considéfis which, by Lemma 2.3, decomposes as,

:}-15 = ?—13710}—7}—4973?4?7?10713

Notice that all the words about the centffg) are of the forrm = 1 (mod 3).
Now to track how far from the zero deviation line the end of each of the tilings
associated with the individual component words lie.

Table 2.3 presents the calculation.

Component off ;5 Fiz| Fro F7 Fa Fs Fa Fr | Fuol| Fis
Initial direction = = = = = = = | = =
Relative displacement +¢ | —¢ +o | —¢ - ¢ - | +to| - | to
Final direction &= = = = = = = | & =
Overall displacement| +¢ | +2p | +3p | +4p | +3p | +29p | +¢p | O | — 9

Table 2.3: Tracking how far away from the zero deviation line the end of each component part
lies. The relative displacements are relative to the initial direction.

As a check on the table 2.3 calculation, notice that, ové?adlis determined to
be ¢ ¢, Sustain), which is as it should be. Such tracking calculations are at the
heart of Theorem 2.2, the culminating highlight of this chapter.

Theorem 2.2 : Infinite Wandering Of #, From The Zero Deviation Line
Given a distance, for convenience expressed as an integer mulijplehef
to and fro tiling path associated with the Fibonacci wgkgdswill eventually
exceed that (one dimensional) distance away from the origin for sufficiently
large enougim wheren= 0 (mod 3).

Proof
Two results to be used are, first, as noted above,

+ ¢, Sustainfor n=0 (mod 6)
— + ¢, Reversal forn=1 (mod 6)
In = —¢, Sustainfor n=3 (mod 6)
— ¢, Reversal forn=4 (mod 6)
and secondly, from Lemma 2.3,

Fan = Fam-2 Fam-s... F1 F4 (73) FaFr... Fam-s Fam-2 me Z"

The proof uses these two results in each of two cases, one corresponding ti
wandering off to the right whem3= n= 3 (mod 6) and the other corresponding

to wandering off to the left whem8= n= 0 (mod 6).
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Case 1 : Wandering off to the right.
For 3n=n= 3 (mod 6) the generalised calculation will be as table 2.4 shows.

Component offsm | Fam-2| Fam-s|...| Fa Fs Fa | Fam-s| Fam-2
Initial direction = = = = = = =
Relative displacemeft + ¢ —¢ —¢ —¢ —¢ —¢ + ¢
Final direction = = = = = = =
Overall displacemen[ +¢ | +2¢ |...|(m=Dp|(M=2)p|(M-3)p|...] O —¢

Table 2.4: Generalised accountancy for how far away from the zero deviation line the end of
each component part lies fom3 n= 3 (mod 6).

Case 2 : Wandering off to the left.
For 3n=n= 0 (mod 6) the generalised calculation will be as table 2.5 shows.

Component offzm | Fam-2| Fam-s... Fa Fs Fa | Fam-s| Fam-2
Initial direction = = = = = = =
Relative displacemept—¢ | +¢ —-¢ —¢ —¢ +¢ | —¢
Final direction &= = = = = &= =
Overall displacemerf - | -0 |l. /A -—mop|2-Mmep|(3-—mMm¢]|..] O + ¢

Table 2.5: Generalised accountancy for how far away from the zero deviation line the end of
each component part lies fom3 n= 0 (mod 6).

Letdy be an integer multiple af.
This is then the fixed distance away from the origin that is to be exceeded.

Letm=d+ 1.

Consider the wordf 3y, decomposed according to Lemma 2.3, in which the start
of the tiling associated with the centrally embeddedwill be at a distancég

from the origin and orientated to project a furthgr+ 0.5 units away from the
origin. The tiling associated witff sy, thus exceeds the distandg from the

O

origin.

Interestingly, Theorem 2.2 would yield the same conclusion it the length of the
A tiles where reduced frogto 1.
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2.7 Author's Notes on Chapter 2
Chapter 2 presents, as far as | know, some original mathematical research an
has striven to both introduce an innovative visualisation of the Fibonacci word
and prove new results in response to what was observed. The majority of the
techniques involved are mainstream symbolic dynamical combinatorics on
words manipulations. Thus, it was felt appropriate to see where the new ideas
went, and show the techniques being applied in an unfamiliar setting.
Throughout this chapter there is a fascinating interplay of local rules giving rise
to global behaviours and constraints. The Fibonacci word is often described in
the literature as “an aperiodic word of minimal complexity”. Even so, it was
fascinating to realise that a single structure was emerging in spite of initially
setting out with the expectation of finding and cataloguing a variety. In
retrospect, | have seen this phenomenon elsewhere, when a carefully chose
symmetric piece of a tiling, patch, provides an elegant way of producing, via
the iteration of a substitution, a tiling of the plalRe&, The key aspect is that the
patch is associated with a selected part of a fixed point. In this chapter that
selected part is termed an embedded word. By way of a specific example of &
similar situation occurring elsewhere, see figure 2.19, and for the full details of
this “Chair Substitution” segRob99]

’_r—\_‘_> I_ _Iaﬂrl I_ _I I__
LLJJ I_ _I ill__ll__

l |
| |

Figure 2.19: To the left is the initial patch associated with a selected embedded word from the
fixed point of an iterated substitution. By iteration of this symmetrical start (ignoring the tile
colourings) a particularly attractive demonstration of the substitutions structure is derived in
much the same way as was done with the Fibonacci word in this chapter.

| originally set out in this chapter to explore a two dimensional drawing rule.
However, the concept of a drawing rule is in itself so interesting that | started
thinking about what the simplest possible drawing rule would be, even if it did
not yield a two dimensional path. The to and fro drawing rule evolved to be
amongst the most simple, and yet proved able to capture some of the symmetrie
of the Fibonacci word. The deviations from zero diagrams came about in
response to discoveries made. | originally hit upon the idea of shading the aree
between the path and the artificiabxis by accident but it was seized upon
because of the strong visual impact of the result. The established practice is tc
put the control points at an end of a tile. | opted to placing it in the middle and
then bent the tile in half around it out of a desire to make more obvious, and
then capture, the symmetry of the deviations from zero.
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Chapter 3

Fractal In Nature

3.1 Overview
Previously we saw that the to and fro drawing rule on the Fibonacci word is a
one-dimensional traversing, back and forth, along theRinén this chapter we
continue to explore the nature of the Fibonacci word. A new drawing rule is
applied that gives a two dimensional path aci®&dt turns out to be a fractal.

3.2 Similarity Fractals
Benoit Mandelbrot's seminal work from 1982, “The Fractal Geometry of
Nature”, contains the example of the mathematically idealised fractal
reproduced below in figure 3[Man82, page 50]Such fractals are created from
two geometric objects that Mandelbrot termsiaitiator and agenerator. In
figure 3.1 the initiator is the straight line segment, Af unit length. The
generator is the Azigzag. The A generator is composed of eight line segments
each of length 0.25 units where the long double length segment is considered tc
be two singles. Each of these eight line segments can now be viewed as al
initiator, each a quarter the length of the original initiator, Phe generator,
scaled to fit, is applied to each and the resultisRepeating the process, this
time with a scaling factor of 0.§Eyields Aq.. As the number of iterations tends
to infinity, the fractal is the “curve” that results. The key idea is to have a
generator that is constructed only from scaled and rotated copies of an initiator.

_,_l_

A1 Az A3 A4

Figure 3.1: Geometric iteration giving rise to a fractal.

In general, a set made uprofcopies of itself scaled by length scale factbas
a similarity dimension given bydimgyy = — Ilc())%T . For the figure 3.1 fract

this gives a value of 1.5 for the similarity dimension.
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3.3 The Double Letter Drawing Rule

The introductory example was selected because of its passing resemblance to
meandering path. In striving to obtain a path of this nature from the Fibonacci
word it would seem likely that, in addition to moving onward, turns to both the
left and to the right will increase the likelihood of obtaining a path that does not
overwrite itself excessively. The Fibonacci word's language contains three
words of length two letters and this suggests a drawing rule such as that showr
in table 3.1 where each possible two letter combination is assigned a different
drawing instruction. Each instruction is assigned an overall length of 1 unit.

Symbol Action
ab forward 0.5, turn right 99 forward 0.5
aa forward 1
ba forward 0.5, turn left 99 forward 0.5

Table 3.1: The double letter drawing rule.

The double letter drawing rule is only valid for Fibonacci words with an even
number of letters. This is so the letters can be bracketed in pairs without a lettel
remaining unpartnered. This requirement causes the focus to fall upon words of
the form F with n = 1 (mod 3). As examples satisfying these constraints let's
considerf, = abaababa and F; = abaababaabaababaababaabaababaaba.
These bracket in letter pairs as,

Fa = (ab)(aa)(ba) (ba)
and
F7 = (ab)(aa) (ba) (ba) (ab) (aa) (ba) (ba) (ab) (ab) (aa) (ba) (ab) (ab) (aa) (ba) (ab)
from which figure 3.2 is derived by applying the double letter drawing rule.

Sart Sart
a4 l
ba ab ba
ba @=_, Finish ba

Finish .
Figure 3.2: Left : The tiling path foff, under the double letter drawing rule.

Right : The tiling path foff; under the double letter drawing rule.

In both cases the path with the last tile removed has rotational symmetry about the point markec
with a red cross. With that last tile removed, direction is preserved in the sense that the entranct
movement is downward as is the exit movement.
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Of course, from Lemma 2.1, we know that removing the last pair of letters from
Fn leaves a palindromic word}/,,. For the two above examples this gives,

W, = (ab)(aa)(ba)
and

Wr = (ab)(aa) (ba) (ba) (ab) (aa) (ba) (ba) (ab) (ab) (aa) (ba) (ab) (ab) (aa) (ba)

where the middle section of each word is highlighted in red. In fact there can be
no middle section other than these two possibilities because of the illegality of
bb and the requirement thd¥/,, be palindromic. Before moving on from figure

3.2 there are a couple of observations to extract. Firstly, notice that the last tile
of each of the two paths is greyed out and in both cases the coloured path ths
remains has half turn rotational symmetry about the point marked with a red
cross. This red cross corresponds to either the tile associated (ath...or the

tiles associated with (ba)(ab)... at the middle ofi¥/;,. Secondly, notice that the
direction along a tile is reversed in its image under the half turn rotational
symmetry. To further explore and explain this symmetry, table 3.2 shows all
possible orientations of the tiles drawn by the drawing rule along with the image
of each under a half turn rotation with the direction “flipped”. This flip is to
keep the direction along the tiled path correct. This direction element cannot be
ignored as the tile for a right tural), if passed through the “wrong way” would

be seen as a left turbg), for example. Fundamentally, the fact that a word is
read from left to right needs to be preserved in the tiling path that it gives rise to.

2
4 d 0 aa s %
e:ﬂab —>:ﬂba baR:_> abﬂ:<_ — =0=— %aae:o:e aa

AR NS (U N S VAR I L _]
B2l el A R ) SR
\ T | ;

Table 3.2: All possible orientations of tiles by the double letter drawing rule. A tile selected
from the upper row of the table has image under a half turn rotation given directly underneath,
(and vice versa). Once rotated, a tile has the direction of the path through it reversed.

In table 3.2 it is noted that in all cases, when the direction is also considered,
(ab) has imagelfa), (aa) is its own image, and@) has imagedb). The same
matching is evident i, and W due to the palindromic nature of these
words. Figure 3.3 demonstrates this;

W, = (ab)(aa) (ba)

J

W, = (ab)(aa) (ba) (ba) (ab) (aa) (ba) (ba) (ab) (ab) (aa) (ba) (ab) (ab) (aa) (ba)
| L= | | |

Figure 3.3: Matching of &b) with (ba), of (aa) with itself, and of §a) with (ab) in W, and W,.
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Lemma 3.1 : Half Turn Rotational Symmetry of "W,, whenn = 1 (mod 3)

Forn=1 (mod 3), %, under the double letter drawing rule gives rise to a
path that has half turn rotational symmetry. Furthermore, the entrance
direction is the same as the exit direction.

Proof
Case 1 n=1 (mod 6).

The number of letters iff, will be of the form & + 2 for some non-negative
integer valuek. With the last two (rightmost) letters removed what remains,
W, is a palindrome (by Lemma 2.1) and of lengthAls the subwordbb is not
legal, at the middle of this palindrome must be the letter configuration
...(ba)(ab)... which corresponds geometrically under the double letter drawing
rule to one of the tiling configurations shown in figure 3.3;

o Léﬂab bigue b/]%b ab -
a a a
l — ab 1 - ba

Figure 3.3 : The four possible orientations of théha)(ab)... tiles at the middle of the tiling
path associated witht/, with n= 1 (mod 6).

Case 2 n=4 (mod 6).

The number of letters iff,, will be of the form & for some non-negative
integer valuek. With the last two (rightmost) letters removed what remains,
W, is a palindrome (by Lemma 2.1) and of length-£2. As the subwortb is

not legal, at the middle of this palindrome must be the letter configuration
...(aa)... which corresponds geometrically under the double letter drawing rule to
one of the tiling configurations shown in figure 3.4;

\J 7
e%e )%(aa e%e )%(aa
\ T

Figure 3.4 : The four possible orientations of théaa)... tile at the middle of the tiling path
associated witl¥/,, with n= 4 (mod 6).

In figures 3.3 and 3.4 the arrows indicate the direction in which the tile is

traversed when it is considered as a piece of path. Notice that all of the possible
configurations in these figures have half turn rotational symmetry about the
centre marked with a red cross and also that all have an exit direction the sam«
as their entrance direction. Cases 1 and 2 now combine to give a basis for at
inductive proof.

For the assumption step, we assume that there is some existing piece of tile
path that has half turn rotational symmetry about its middle and with an entrance
and exit in the same direction. This is represented diagrammatically as shown in
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figure 3.5 and, without loss of generality, it will be assumed that the orientation
and the direction through the tiling path is as shown.

%:#... ><...#:|%

Figure 3.5: The assumption step in diagrammatic form representing a piece of path. The green
half tile represents any of three possible tiles associatedabith(#a) or (ba). It is assumed that

this piece of path has half turn rotational symmetry about the red cross at the middle of the piece
The orientation of this path and the entrance and exit directions are as shown, without loss of
generality.

The piece of path in figure 3.5 will extend to the right in one of three possible
ways, either through the addition of the tile associated abthor aa or ba.

From the palindromic nature of the Fibonacci words, these three possible
extensions to the right must match with extensionsapha, or ab respectively

to the left. Diagrammatically, the three possibilities are shown in figure 3.6.

baﬁ::‘...x...#::ﬂab
l
_).:‘félyach:...><...:.:.:%a:_>

T
abg::#...x...#::ﬂba
1

Figure 3.6: The inductive step, showing that all possible extensions of the path by one tile to the
right cause a tile to be added to the left that retains the half turn rotational symmetry about the
red cross and gives the entrance and exit directions that continue to be the same.

In all cases, after the inductive step, the tiling path continues to have half turn
rotational symmetry about the red cross and the entrance and exit directions
continue to be the same. The principle of induction can now be invoked to
complete the proof. O

3.4 Is The Path A Fractal ?
By way of further illustrating Lemma 3.1, figure 3.7 on the next page shows
simplified paths (where the individual tiles are implied rather than shown
explicitly) for the two examples considered previously, and ¥, alongside
the next two Fibonacci words for which thén 7, satisfiesn= 1 (mod 3),% 19
and F13. These images strengthen the suggestion that the drawing rule is giving
rise to a path that is fractal in nature. The aim of this chapter is to prove that this
Is so. Several of the ideas used in this section are inspired by the 2009 pape
“The Fibonacci Word Fractal” by Alexis Monnerot-Dumaifid¢on09] where
they are applied to a different but related fractal.
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rl

Figure 3.7 : From left to right, the tiling paths associated with ¥7, 10 and 13 under the
double letter drawing rule. The paths start at the top of the diagram and finish at the bottom.
With the very last tile removed these paths repre®@pt™;, Wioand W,

Theorem 3.1 is now stated; a crucial result underpinning our subsequent work.

Theorem 3.1 : The Fractal Structure of /,; (Monnerot-Dumaine [Mon09])
Fibonacci words#, with the last two letters removed are dendiéy and,
from Lemma 2.1, are palindromin,> 1. Let the two letters removed be
whereuv is one of the two possible endings; eitakr(with u = a andv =b
whenn is odd) orba (with u = b andv = a whenn is even).

Then, forn > 6,

Whn = Whnos (W) Wn_3 (wu) Wn_s (U) Wn_3 (uv) Wh_3

D" | |[Wn 3| | (D"

! 0 i
Wn—s Wn—e Wn—s
! 1 v

D" | | Whis| « | (D" to

In particular this is true when = 1 (mod 3) corresponding to Fibonacci
words that are valid under the double letter drawing rule.
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Intuitively, a fractal is generally regarded as an endless, repeating, (or “almost”
repeating) pattern within which can be found echos of its parts at different

scales. Indeed, the whole maybe found within itself at a reduced scale. Theoren
3.1 shows that the Fibonacci word under the double letter drawing rule is giving
rise to an entity of this nature. The proof of Theorem 3.1 will require that a few

lemmas be established first and these will be presented shortly. First, however
figure 3.8 provides an illustrative example for Theorem 3.1 where the tiled path

associated witl#/1, is shown broken down into its component parts as given by
Wio= W (ab) W5 (ab) W, (ba) W, (ba) W

¢Sart
]

- ) T ab 1T | T . -

--I
1T 1 --I
i
| Finish
Figure 3.8: lllustrating Theorem 3.1 foi/,o= W5 (ab) W5 (ab) W4 (ba) W5 (ba) W-.

Lemma 3.2 : End Letter Pair Reversal Rule (Monnerot-DumaingMon09])
Let Fn = Wh(uv) whereu andv represent the penultimate and last letters
respectively of . Let Th= Wh(wu) where the two end letters have
swapped places. Then,

Tn+1 = fn Tn—l
Proof
The Fibonacci words, by definition, have the relationship,
Fnir = FnFnoa forn>1, F,=a Fi=ab
Whir(W) = Fn Wh_1(VU) Fn+1, Fn_1have the same two letter ending
Whii(uv) = Fn Wn_1 (uv) reverse the two letter ending on both sides

Thi1 = FnTIn-a O
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Lemma 3.3 : “Almost” Commutativity (Monnerot-Dumaine[Mon09])

Let F» = Wn(uv) whereu andv represent the penultimate and last letters
respectively of Fn. Let Th= Wnh(wu) where the two end letters have
swapped places. Then,

Fn=Fn-2Tn-1 and Tn = Fn_2Fn-1

Proof

From Fn= Wh(uv) note that, for examplefn, 1= Wh.1(w) because the
two letter endings of the Fibonacci words alternate betvabeandba. From
Th= W, () note that, for exampléln, 1 = Wh. 1 (uv) for the same reason.

From the definition of the Fibonacci substitution acting repeatedl§ff o= a,
we have thatf, for 1< n< 4 are as follows along with the correspondifig

e Fi=ab, 7,=ha

e F,=aba, T,=aab

® }-3:abaab, T3=ababa

e F,=abaababa, 7, = abaabaab

By way of establishing a basis for a proof by induction consider thencas
Then, F3_,73_1 = F17T, = (ab) (aab) = F5 which matches the lemma's first
claim, and alsofs_, F3_1 = F1 ¥, = (ab)(aba) = 73 which matches the
second.

It is now assumed the result is true ot k for somek e 7, k> 4.

In other wordsfx = Fk_->Tk-1 and Tk = Fk_» Fk_1 by assumption.
For the inductive step, consider k + 1, in which case,

Fri1 = Fk Fr-1 (By definition)
= Fk-1Fk-2Fk-1
= Fx_1Tk (From the assumptive step)
which is the first result witn replaced with + 1.
Also,
Fr-1Fk = Fuo1 Fr-2Tk-1 (From the assumptive step)
= FxTk_1 (By definition)
= Tki1 (By Lemma 3.1)
which is the second result withreplaced withk + 1,
Induction now gives the required pair of results. O

Lemma 3.3 is telling us that if we take the concatenation of two consecutive
Fibonacci words#,_1 with Fn_, (which is equal tgf,) and concatenate them
the other way round a§nh_, with F,_, then the resulting word is very nearly
still Fn. In fact, the lemma tells us that this resulting wordFisbut with the

last two letters exchanged. One way of remembering this is to think of two
consecutive Fibonacci words being “almost commutative”.

The preparations are now done, and we are all set to prove Theorem 3.1.
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Theorem 3.1 : The Fractal Structure of/,; (Monnerot-Dumaine [Mon09])

Fibonacci words%p, with the last two letters removed are dendi and,
from Lemma 2.1, are palindromin,> 1. Let the two letters removed be
whereuv is one of the two possible endings; eitakr(with u = a andv =b
whenn is odd) orba (with u = b andv = a whenn is even).

Then, forn > 6,

Wn = Whoz (W) Wh_3 (vu) Wn_s (Uv) Wn_3 (Uv) Wh_3

D90 |« | Whos| « | (D"

¢ 0 b
Wh_s Wn-s Vs
. 0 i}

D" | «— | Whos| « | (D" tor

In particular this is true when = 1 (mod 3) corresponding to Fibonacci
words that are valid under the double letter drawing rule.

Proof

Fn= Fno1Fn_> (By definition)
= Fn2Fn-3Fn-3Fn-a
= JFnsInaFnaFnsTFnsFna
= FnsFnaFnsIneFnsInaFnsFna
= Fn-sFn-sFn-6Tn-3Tn-3 (By Lemma 3.3)
= Whn_s (W) Wn_s (W) Fn_s Wn_3 (W) Wn_3 (W)

Thus, Wh = Wh_3 (W) Wh_3 (W) Wn_e (W) Wn_3 (W) Wh_s O

3.5 A Vector Relationship Between Tiling Paths
Theorem 3.1 proves that the double letter drawing rule has given rise to a fractal.
It is also the key to exploring other aspects of the meandering path. One striking
feature of figure 3.7 is that the exit of the tiling path associated Withand
W5 is directly vertically below the entrance. Figure 3.9 and figure 3.10 extend
the sequence of fractals presented in figure 3.7 and show/thais the next
word with a tiling path that has this property.
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Figure 3.9: The tiling path associated with;s under the double letter drawing rule. The path
starts top and finishes bottorf#/,s has the same path but with the very last tile removed.

—
Let Wy, be the vector with its tail at the start of the tiling path‘#%, and its
—>
head at the finish. Table 3.3 givé8, for some values of.

Wh Ne tiles Wn Wh N° tiles Wn

W, 3 (: i) Wis 304 (_30)
W, 16 (_06) Wi | 1201 (: gg)
Wio 71 (: ﬁ) W | 5472 (_ 238)

Table 3.3: Observed values df7n from careful counting on figures 3.7, 3.9 and 3.10.

Two previous vectors can be used to determine a subsequent vector in table 3.
by making use of Theorem 3.1 and taking care over how théu@s flip the
vector. For example, for= 1 (mod 6),7/, is obtained fronf/,, and W/ by,

’ 12 % 11
W13:( )4—_%4-_12

0
6

11 2
+ + —12)+_l+
2

+ +

3

-11 -11

B (—(310)

Nl NI-=
N~ Nl-=
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Figure 3.10: The tiling path associated with;g under the double letter drawing rule. The path
starts at the top of the diagram and finishes at the bottom. A bounding rectangle has been fittec
around the fractal with a vertical diagonal showing that the entrance is directly above the exit of
the tiling path. With the very last tile removed this is also the tiling patfitos
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As a further example, for= 4 (mod 6), 7/, is obtained fromi/; and W, by,

1 1
> [0 2 -6| |72 2\ |72 -6|  ["2 0
Wlo_(—6)+_1+ ol Lol ] o +_l+—6)
2 2 2 2
[-12
-1

Lemma 3.4 provides general formulae for such calculations.

. e

Lemma 3.4 : Iterative Formulae for W,
—_— p —_—>

Let Wy_3= q andWh_e=

andn =1 (mod 3) such than the vectors represent displacements between the
entrance and exit of the associated tiling paths under the double letter
drawing rule on the Fibonacci word. Then,

rs) wherep, g, r ands are integer constants

2p—-29-r+2
forn=1 (mod 6)
— 2p+29-5s
Wn:<
2p+2q—r—2f _2 46
_2p+2q-—s or n=4 (mod 6)

Proof
From Theorem 3.1, taking care over the orientation of the vectors implied by the

90° turns, and with,_; and Wy, _¢ as defined above,

Case 1: Fon=1 (mod 6),

AN 3 a3
Wh = + - )+ +(_r+ + + +
1 1 -S 1 1
q -5 p 5 5 p -5 q
2p - 2q - 2
_ (P a-r= as claimed.
2p+29-S
Case 2: Fon=4 (mod 6),
o) 73] (a).[2 3| (a) [73] . (p
Wh = + + + +_r)+ +( + +
1 - 1 -S 1 - 1
q -5 Y 5 5 p -5 q
2 29—-r -2
_ (Pt as claimed.
-2p+29-s
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Previously, in table 3.3, there appeared to be an alternation between vectors o
the form Wy, = \(/)v) whenn=1 (mod 6) andi/p = (x i 1) whenn= 4 (mod 6).

Our next result, Lemma 3.5, shows that this alternation remains a feature as
tends towards infinity.

. _—>
Lemma 3.5 : Alternating Nature of W,

For alln= 1 (mod 3) the vectoWn is of the form(\?v) whenn =1 (mod 6)

+1
between these two forms repeatediyasnds to infinity.

and of the form(X X ) whenn = 4 (mod 6). In other worde alternates

Proof
Case 1l:Fon=1 (mod 6),

Whn_sis of the forn(X X

. 0
i 1) and Wy, _g is of the forrr(w).

From Lemma3.4Wn = (Zp— 29 -r+2 withp=x,9g=x+1,r=0,s=w
2p+29-S
BN 0
n-= 4x+2—w)

This is of the required forr(’rv?/) wherew’ = 4x + 2— w.

Case 2 : Fon=4 (mod 6),

— 0 — X
Whn_sis of the forn'(w andWn_gis of the fOI‘H’(X i 1)'

2p+29-r -2

—_—
From Lemma 3.4W,, = Copt2q-s

)Withpzo,qzw,r:x,s:x+1

2w - x = 2)

W”:((Zw—x—2)+1

This is of the required forr(‘ux, )i 1) wherex’ = 2w — x — 2.

_ — X
Given that™/, is of the form 1

1) with x = — 2 followed by, being of the

form (\(/)v) with w = — 6, we have an initial alternating basis to which an inductive
argument is then applied.
Alternate use of the case 1 and case 2 results, as appropriate, provesrthat, as

—>
tends to infinity, the claimed alternation ¥\, between the two forms of vector
continues to hold. O
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3.6 Determining Fractal Dimension

An important measure attached to a fractal is its dimension. There are severa
different measures of dimension in common usage and there is a skill in
selecting which is most appropriate for a given fractal. When dealing with
relatively uncomplicated fractals which have component parts (for example, line
segments) that do not excessively overlap, the generic term “fractal dimension”
is sometimes used, especially if the different measures of dimension give the
same numerical result. For our fractal the dimension can be determined using ¢
modified version of the formula previously given in section 3.2;

logm
logs

In this,mis the ratio betweeff,,_z and ¥, (in the limit) at which the number of

line segments is increasing ands the expansive length scale factor (in the
limit) at which (for example) the corresponding diagonal of a rectangular box
that is bounding the fractal is increasing. This rectangular bounding box
becomes more intuitively obvious as the number of iterations increases and is
shown explicitlyi_niigure 3.10 as an orange outline along with the diagonal

corresponding tdl/1s. For our fractal, the similarity dimension will have the
same value as that obtained from more sophisticated measures. In Kennetl
Falconer'sFractal Geometry, [Fal03], for example, box dimensionjme, and
Hausdorff dimensiordimy, will take on the same value. Indeed, for the example
presented earlier in figure 3dimg = dimy = dimsym = 1.5.

dimgyy = wheres is % for ther of the earlier formul)a

Proposition 3.1 : Value ofm
For the fractal associated with the double letter drawing rule, in the limit, the

logm is ¢>3, where ¢ = ﬂ and mis the
logs 2

limiting ratio at which the number of line segments betw&gns;and 7
is increasing.

value ofm in dimgyy =

Proof
The number of letters in the Fibonacci wdfg (see table 1.1) is given by the
Fibonacci numbefr (n) which, by definition, is given by,

fm=fn-1) +f(n-2)forn > 2with f(0) = 1, f(1) = 2

In consequence; fm _fh=-b+f=-2» _, fh-2
f(n-1) f(in-1) f(in-1)
. . f (n) L . f(n-2
Taking limits, nIl_)mmm = nIme 1+ nll_)moo T T
. f(n) . . 1
Let x = lim ———— in which case the above becomes- 1 + —.
n—e f(n-1) X
Solving gives the expansive valuexafought. It is,¢ = %
Hence m = |im Q) = ¢3. O

| - 7
n—e f(n -3
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Note that, in Proposition 3.1 it does not matter that it is pairs of letters that give
rise to the number of line segments because it is a ratio that is being found. Alsc
note that, because we are taking limitsradends to infinity, we can be relaxed
about the one tile (two letter) difference betwéganand W/p,.

Proposition 3.2 : Value ofs
For the fractal associated with the double letter drawing rule, in the limit, the

logm
logs

- - - % %
scale factor in the limit betweel/,_5; and Wh.

value ofsin dimgyy = is 1 + V2 wheresis the expansive length

Proof

. . — X
Consider the two consecutive vectoi¥n_¢ = w4 1

and Wn_3 = (VOV) in

. 7 2w - x = 2)
which caseWp, = ((Zw— x—2)+1

As we are dealing with an expansive iterative process, as the number of

) by Lemma 3.4

. . . T X
iterations increasesw and x become large withWnh_¢ — « and

Wna (ZW_X.

W — X The lengths of these three vectors are tending towards the

following; ‘W_;‘ - V2 x, m| - wand|Wn‘ > V2 2w - X).
In the limit, the expansive length scale factor is given by,

wo V2 @2w-Xx
V2 x w
Solving this quadratic equation gives, = v 2 x(v2 * 1).

from which, W2 — 4wx + 2x2 = 0.

. . w
For an expansive value, it follows that,= ol 1++vV2 O

V2

The chapter now concludes with the important result presented as Theorem 3.2;

Theorem 3.2 : Value of Hausdorff Dimension
The Hausdorff dimension of the fractal associated with the double letter

drawing rule isdimy = Iog¢3 = 1.6379
g o log(1++v2) 7
Proof
Using the values ah ands from Propositions 3.1 and 3.2 respectively,
3
dmy = dimgyy = = logm = l0g ¢ = 16379 O

logs log (1 + V2)
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3.7 Author's Notes on Chapter 3
The fractal known in the literature as “The Fibonacci Word Fra¢talk21b]
arises from what is termed “the odd-even drawing rule” directly applied to the
Fibonacci word, assigning one instruction to one letter. The instructions to draw
the fractal tell the drawing pen to, starting before the first lettér of

o take the next letter and draw a unit line segment forward
o if the letter is ara then,
e turn 90 left if thea is in an even position withiff
e turn 90 right if thea is in an odd position withiff
e repeat the process indefinitely
Figure 3.11 gives an example of the path produced.

Figure 3.11: The meandering path produced by the odd-even drawing rule applied to the
Fibonacci word ¥ 1,. The path starts at the top of the diagram and finishes at the bottom.

The odd-even drawing rule is not an obvious drawing rule to apply because of
the need to know for each lettif it is in an odd or even numbered location.
The advantage of the rule, however, is that it draws a fractal that is more straight
forward to analyse. To me, taking the letters in pairs seemed more natural. | was
curious to know if the “alternative” fractal obtained was amenable to a relatively
straight forward mathematical analysis; it was a relief to find a way of
determining the Hausdorff dimension! In some respects the two fractals are
different. For example, the odd-even fractal has a limiting ratio of width : height
of 1 :v/2 whereas the double letter fractal's ratio is 1 :\L 2 (The interested
reader may like to confirm that result). And yet they have exactly the same value
for their Hausdorff dimension.
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Chapter 4

Future Directions

4.1 Generalised To and Fro
Inevitably, in a work of less than 12,000 words, we have but sampled some
flavoursome fruit from the low hanging branches of a vast tree. The ideas from
chapter 2 have obvious extensions into two dimensions even without opting for
a completely different drawing rule like that of chapter 3. Table 4.1 gives a
generalised to and fro drawing rule. Wigh= 180 it is as before but other
values ofp are waiting to be explored. For example, witk 108 the attractive
motif shown left in figure 4.1 is obtained forfhy,. Increasing tha in ¥, to 18
gives a massive amount of overwriting but reveals the path shown on the right of
the same figure with a steady overall bend. Increasifugther will cause it to
eventually circle back on itself but is an annulus the eventual form? Chasing this
idea a little further, figure 4.2 shows a similar circular path when136 for
F15 (left) and F 15 (right). Computer explorations suggest there may be a special
“fire hose” angle aroung = 137.4 that projects the path forward overall. The
name arises because finding this critical angle is akin to holding onto the tap enc
of a hosepipe. The hose is trying to snake up and down and wants to swing bacl
on itself spraying water from its free end in all directions but forward. Finding
such “fire hose” angles (if they exists) using mathematics may prove interesting.

Symbol Action
a forward ¢
b forward 0.5, turnp®, forward 0.5

Table 4.1: The generalised to and fro drawing rule making use of an arigktead of 180

>A\ AN (
LARAN

VN
RN AR

A<

LA
MAVQAWA‘QW i
vgvﬁmnmwzmum‘
PURE 2N

Figure 4.1: Left : The tiling path when the = 108 drawing rule is applied t& ..
Right : This path has an overall bend amthe#, is increased.
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Figure 4.2: Left : The tiling path when the = 136 drawing rule is applied t ;5.
Right : The same rule appliedfqs.

Figure 4.3 : Using a computer to explore the possibility that there is a value iof the
generalised to and fro style drawing rule that, overall, projects the tiling path in a straight
direction. Here the wordFy, is suggesting that the angle sought is greater ¢han137.0
(upper diagram) and also greater tlhan 137.2 (middle diagram) both of which gives a tiling
path that seems to overall have an anticlockwise bend, whereag37.4 gives an almost
straight overall projection of the path (lower diagram). A striking feature of the path is that it
seems to be composed from two motifs thus giving a visualisation of a factorisafion of
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4.2 Self Avoiding Walks
In the Monnerot-Dumaine pap@von09], proving that the Fibonacci fractal
does not intersect itself is identified as an open problem. There is a substantia
body of work on self avoiding walks which may provide some pointers. By way
of an initial look at this problem, Figure 4.4 shows a fractal with a straight line
segment as initiator, /A of 1 unit length. The generator is the dogleg. The
substitution 2, underpinning the iterative generation of this fractal is;

F > FLFRFRFLF
Q Lo L
R—-> R
and the iterative fixed point of interest¥ (F) asn — oo .
The drawing rule is as given in table 4.2.

A1 A2 Az : As

Figure 4.4: An example of a self intersecting fractal.

Symbol Action
F forward 1
L turn left (clockwise) 99
R turn right (anticlockwise) 90

Table 4.2: The drawing rule that acts on the substitufdl5i(F) to give the fractal of figure 4.4.

The infinite wordQ™ (F) beginsF LFRFRFLFLFLFRFRFLFR... but

the embedded word highlighted in red is a loop that self intersects. This proves
that this fractal is not a self avoiding walk. In general, determining if an infinite
walk is self avoiding is difficult but, possibly, the almost periodic nature of the
Fibonacci word means this is a problem that can be resolved in this special case
It would be interesting to work on this.
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4.3 Letter Frequency Analysis

Tied in with the problem of determining if the double letter fractal is a self
avoiding walk or not, would seem to be the issue of analysing the frequency
with which the three letter paiab, aa andba occur. Without going into the
detall, it turns out thadb andba have a relative frequency of about 38% veigh
claiming the remaining 24%. However, it's not just these frequencies that are
important; as we read through from left to right, how much can the count of
one letter pair get ahead or behind the others? There would also seem to be mer
in looking into the possible factorisations $fand the frequencies of letters (or
double letters) within and between factors. Theorem 2.1 gave a proof that one
such factorisation exists; there are many others.

4.4 Periodic Approximations to the Aperiodic

Figure 4.5 shows a fractal with a straight line segment as initiatpgf A unit
length. The generator is the, Aneander. This was inspired by the tiling path
associated with/; under the double letter drawing rule. This fractal can be
thought of as a periodic approximation to our aperiodic fractal ffoomder the
double letter drawing rule. This approximation has 17 segments and a scaling
factor of one seventh giving a fractal dimension of 1.46. A sequence of such
approximating a fractals based #ns Fi9, Fo5, ... would seem to provide
ever better periodic approximations. For example, has 1762289 segments
and a scaling factor B119°1 giving a fractal dimension of 1.60, which is
getting closer to the 1.64 of the double letter fraéteg there situations where it
would be easier to work with these periodic approximations rather than the
aperiodic real fractal ?

Figure 4.5: With a straight line initiator, using &h; inspired generator to obtain a periodic fractal to
approximate the aperiodic fractal obtained for the Fibonacci wWordnder the double letter drawing
rule. This approximation has fractal dimension 1.46 rather than the 1%64duof increasingly better
approximations are obtained by using as inspirafief F1o, Fo5, Fat, -
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4.5 Author's Notes on Chapter 4
A major part of the attraction of working with the Fibonacci word is the
abundance of patterns giving mathematical footholds and suggesting possible
avenues to explore. In the established literature the Fibonacci substitution anc
the resulting word has been generalised in several different ways and it would
certainly be interesting to extend this work to embrace them. Another possible
future project would be to add an exercise to the end of each chapter by way of
expanding and exploring further the content therein.
In researching this topic | became very aware that there is a large body of
mathematics, far more sophisticated than that covered here, that analyses th
Fibonacci word in ever more subtle ways, and from an ever more general
viewpoint. However, the desire to take this work in that direction has been
tempered for now by the fact that the dissertation deadline is upon me; it is time
to stop!



60 Substitution drawing rules on the Fibonacci word

Appendix Al :
Remembering Professor Uwe Grimm

It was Uwe who introducedme to that most fascinatingof

mathematicaltoys, the infinite Fibonacci word. It's a

deceptivelysimple substitution,f, on an alphabetof only

two letters, 4{a,b}, definedby a — abandb — a. It gives

us the finite Fibonacciwords, #, = 6" (a). The first few

are; fo= a, F,= ab, F,= aba, F3= abaab and so on.

Throw away the last couple of letterson any givenword

andwhat'sleft is a palindrome As example¥, = abaababa

which, without its rightmosttwo letters, is abaaba. This

palindromic nature along  with the remarkable
concatenatiorproperty that ¥n,= Fn_1 Fn_2 for n > 3,

guarantees that the Fibonacci words abound with

symmetriesAs n — oo theinfinite Fibonacciword emerges
as a fixed point of the iteration.

Uwe took pleasurein finding geometricvisualisationsto
complementhis algebraic researchesThese were often
stunningly beautiful creations that non-mathematicians
couldmarvelover.Whenhedied, | hadjustbegunstudying
the Open University's M840 graduatecourse, Aperiodic
Tilings and SymbolicDynamics.In the coursetopic guide,
(co-authoredvith ReemYassawi),he showedhow, via the
Fibonacci word's substitution incidence matrix, the left

eigenvector gave rise to an aperiodic tilingRf.

/2 ——

/2% ———

Fsl |- | ]

jf4 [ | [ | [T ]

jfs [ [ [ [ I [ [T [ [T [ [ ]

For my dissertationl endedup running with this idea,
underthe watchful eyeof Dan Rustwho kindly steppedn
to supervisedUwe'sorphanedstudentsand keepthe course
going.l took Uwe'stiled pathandtwistedit backandforth,
oftenwith it tiling overitself, andlooked at the properties
of theresultingfigures. Thetwisting wasvia a drawingrule
thattook eachletter of the Fidonacciword in turn andused
it as an instruction to say how the next tile should be
placed.Someattractiveimagesresulted.To give a flavour
of what canoccurthe adjacentimageis for 7., underthe
following drawing rule,

Symbol Action

a forward¢ (The golden ratio, about 1.618

b forward 0.5, turn 108 forward 0.5

| like to thing thatmy visualisationof ¥, is in the spirit of
the mathematicghat inspiredit; Uwe's mathematicsAnd
that he would approve.

Martin Hansen. June 202:
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“Remembering Professor Uwe Grimm” was produced as a postefrhir
Aperiodic, a conference organised in memory of Uwe Grimm at The Open
University in Milton Keynes in June 2022.

It was subsequently published in the December 2022 edition of M500, the
mathematics magazine of The Open University.
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Appendix A2 : Programs

A2.1 To and Fro Drawings : Samples of Simplified Logo Program Code

to FibOlright
forward 1.618
forward 0.5
right 90
forward 0.4
right 90
forward 0.5
end

to FibO1lleft

to FibO2right
FibOlright
forward 1.618
end

to Fib02left

to FibO3right
Fib02right
FibOlleft
end

to Fib0O3left

: Program name, this will drag¥; = ab
: Length of tileA, the golden ratio to three decimal places
: First half length of tileB

: To make an artificial step downward at the centre oBtile
: Second half length of tilB

: Similar to FibO1right with right 90 replaced with left 90

: Whether moving to the right or the left the line needs to
: zigzag downwards

: Program name, this will dray, = aba

: Call program titled FibO1right

: The extra tileA on the end off, having just drawrff;

: The moving left version of FibO2right

: Drawing 5 using the relationshiffs = 7, 7,

: Call program titled FibO2right
: Call program titled FibO1left

: Similar to Fib03right with FibO2right replaced with Fib02left

and with FibO1lleft replaced with FibOlright

Number Wonder Mathematics Software
Title| Logo Programming Language
Author Martin Hansen
License The Open University
Version 1.0
Dated 1st of March 2022

Figure A2.1: A LOGO programming language interpreter written to allow short
“turtle graphics” programs to be written that implement and explore various drawing rules.
Many of this dissertation's diagrams were drawn using this software.
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