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Abstract
This paper is a sharp and focussed exploration of the Fibonacci substitution and
the mathematical entity it gives rise to, the Fibonacci word. Our investigations are
both of an algebraic and a geometric nature. Indeed, it is the combination of the
two that gives this paper its overall character. The work is in four parts. Chapter 1
is a brisk tour of necessary basics; definitions, key theorems, and a number of
techniques subsequently used extensively. A simple one dimensional drawing rule
is investigated in chapter 2 with the aid of what is thought to be an original
geometric figure that we will call a “deviation from zero diagram”. A highlight of
the chapter is its concluding elementary proof of a non-trivial result. Chapter 3
presents a two dimensional drawing rule. Although selected because it is amongst
the simplest form possible, this time the object derived from the rule is a fractal.
That this is so is proven and its fractal (Hausdorff) dimension calculated. This
fractal is a (possibly previously unexplored) variant of that known in the literature
as “The Fibonacci Fractal”. By way of an overall conclusion, the last chapter, the
fourth, suggests a few aspects of those preceding it worthy of further analysis.

Martin Hansen
The Open University
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Symbols Used
In addition to standard mathematical notation and following symbols have a
particular meaning in this work.  

Symbol Meaning

A Alphabet : A set of letters

D n The nth deviation from zero structure (n is a catalogue entry).

dimSYM Similarity dimension of a fractal

E n A piece of tiling associated with an embedded word

F n The Fibonacci word, F n = θn (a)

F ∗
n  with the leading (aba) removed; F n F n = (aba)  F ∗

n

| F n | The number of letters in the word F n

F n
→

Displacement vector between the start and finish of the associated path

F The infinite Fibonacci word

G n A piece of tiling in a growth chart (n is a catalogue entry)

LA The length of a tile (tile A, for example)

MΦ The incidence matrix (for the substitution Φ, for example)

T n  with the last two letters exchanged, each with the otherF n

W n The Fibonacci word  with the two rightmost letters removedF n

W n
→

Displacement vector between the start and finish of the associated path

φ The golden ratio, φ =  1+  5  
 2 

λ An eigenvalue (λPF is the Perron-Frobenius eigenvalue).

θ The Fibonacci substitution (a → ab, b → a)

Θ An inflation mapping on tile lengths

¸ Denotes the end of a proof
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Chapter 1

The Fibonacci Word

1.1  Mathematical Beauty
Mathematics is often described by its practitioners as being beautiful. “Beauty”,
some say, “is in the eye of the beholder”. To me, mathematical beauty revolves
around simple ideas giving rise to interesting entities with visualisations that can
be sketched on paper and yet have extraordinary properties and depth. Over the
following pages a fascinating object, the Fibonacci word, will be explained and
explored. To set the scene and make this work self-contained, this first chapter is
a minimalist introduction to the Fibonacci word. This initial material is well
known. Of necessity, it begins with definitions of the objects of interest. These
definitions are deliberately paired down and elementary to make this work as
accessible as possible. Readers wanting a more technical treatment of the
foundations and to see how they are embedded in a more general context, are
recommended to read, for example, the classic textbook by Pytheas Fogg
[Fogg]. The main contribution of this chapter to the established literature is to
string together snippets found in the standard works (for example,[BGr13], and
[ASh03]), and in the the use of a uniform notation and terminology. It strives to
enhance established explanations, to untangle dependencies, and to present a
narrative that covers the key steps, stands by itself, and flows. This chapter is
sharply focussed on the subset of material needed to set up the Fibonacci word
ready for the visualisations to be explored in the subsequent chapters. That is
where the true beauty of the Fibonacci word starts to be revealed.

1.2  Definitions
By definition, aword is a finite or infinite sequence of elements, termedletters,
all of which are taken from a finite set called analphabet. In this dissertation we
work exclusively with the two letter alphabet,A = { a, b }. From this alphabet,
for example, the lettersa, b, a, a andb could be selected, in that order. Then, by
concatenation, the wordabaab formed. Concatenation is a simple placing of the
selected letters one after the other, working left to right, to form a word. Words
can themselves be concatenated. For example,aba concatenated withab again
forms the wordabaab. The interest here is not in forming words from a random
selection of letters from the alphabet but rather in starting with the simplest of
words, a single isolated lettera, and repeatedly applying asubstitution. In
general a substitution can be thought of as “a replacement rule”. Our interest is
in the Fibonacci substitution, denotedθ. Given a word, the Fibonacci
substitution replaces each occurrences of the lettera with the letter pairab and
each occurrence of the letter b with the letter a. Mathematically θ is given by,

a → ab

b → a

When applied iteratively thrice to an initial lettera, the wordabaab is obtained
via the following steps,

a → ab → aba → abaab
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   θ3 (a) = abaab, F 3 = abaabIt could be written that but we will write   because

the focus throughout this dissertation is entirely on the specific simple case of
the Fibonacci substitution being applied iteratively to an initial isolated letter a.
By definition, the nth Fibonacci word is given by,

F n = θn (a)
Table 1.1 shows an initial lettera having the Fibonacci substitution applied
repeatedly, giving rise to the first few Fibonacci words. 

n F n = θn (a) | a | | b | | F n |
0  = aF 0 1 0 1

1  = abF 1 1 1 2

2  = abaF 2 2 1 3

3 = abaabF 3 3 2 5

4  = abaababaF 4 5 3 8

5  = abaababaabaabF 5 8 5 13

6  = abaababaabaababaababaF 6 13 8 21

7  = abaababaabaababaababaabaababaabaabF 7 21 13 34

Table 1.1 : The Fibonacci substitution applied iteratively to an initial letter a.

With any iterative process, any object in the nature of a fixed point is of interest.
With that in mind, notice that the word  corresponding to any given value of
n, occurs at the leftmost end of all subsequent words. The infinite fixed word
that results asn tends to infinity is known as theFibonacci word, , and has
been described as “one of the most studied examples in the combinatorial theory
of infinite words” [CRR14, page 40].

F n,

F

As table 1.1 suggests, successive Fibonacci words,, have the number of
occurrences of the lettera, which we will denote , the number of occurrences
of the letterb, denoted  and the overall word length, , all working their
way through the world famous Fibonacci number sequence which is presented in
table 1.2. With a little thought it can be seen that the number patterns of table 1.1
arise directly from the Fibonacci substitution (a → ab, b → a) where each letter
in a previous word yields one lettera in the next, and, in addition, each lettera
in a previous word yields one letter b in the next.

F n
| a |

| b | , | F n |

Position 0 1 2 3 4 5 6 7 8 9 10 ...

Term 0 1 1 2 3 5 8 13 21 34 55 ...

Table 1.2 : The Fibonacci number sequence.

There is a remarkable relationship where any given Fibonacci word is the
concatenation of the two previous Fibonacci words;

  F n = F n − 1 F n − 2   n ∈ Z,  n ≥ 3,for 

F 1 = ab    F 2 = aba.with and
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In table 1.1, for example, notice that = abaab,  = abaababa and that  is
the concatenation  which is  = abaababaabaab. Respected authors,
such as Lothaire, take this relationship as the definition of the  Fibonacci words
[Lot83, page 10]. As an aside, notice that in principle this relationship provides a
computationally efficient way to generate the finite Fibonacci words up to any
given n by repeated concatenation of two previous words.

F 3 F 4 F 5

F 4 F 3 F 5

A subword of the infinite Fibonacci word,  is defined to be any word that can
be found as a piece of . Clearly, the Fibonacci words, , are subwords of .
From studying  = abaababaabaababaababaabaababaabaab... it can be seen
that other subwords of  include, for example, bab and baab.

F ,
F F n F

F
F

We now define the infinite Fibonacci word's language to simply be all possible
subwords of . Table 1.3 lists the language's subwords up to six letters length.F

length 1 2 3 4 5 6 ...

a aa aab aaba aabaa aabaab ...

b ab aba abaa aabab aababa ...

ba baa abab abaab abaaba ...

F bab baab ababa ababaa ...

words baba baaba baabaa ...

babaa baabab ...

babaab ...

...

N° of words 2 3 4 5 6 7 ...

Table 1.3 : All subwords up to six letters in length in the Fibonacci word's language.

1.3  Two Key Language Exclusions
Intentionally, table 1.3 has been presented somewhat “out of the blue” and this
is because, whilst it gives illuminating hints of structure within the Fibonacci
word, a detailed derivation of it is not relevant to the aspects of the Fibonacci
word of interest in chapters 2 and 3. However, the fact that neither of the words
bb or aaa occur is of crucial importance and we now attend to a proof of this.

Lemma 1.1 : Exclusion from F of bb
Of the four possible two letter subwords that can be formed from the letters
a and b all but bb are subwords of the infinite Fibonacci word, F.

Proof
Note thatbb does not occur in , ,  or . Inspection of  = abaab
reveals that the subwords of length two letters in the Fibonacci word's language
include ab, ba and aa. For the letterb to occur in a word subsequent to it
must come from the part of the Fibonacci substitutiona → ab. Wheneverb
occurs in  with n ≥ 3 it must be preceded by ana. Thus, in the Fibonacci
word's language, bb can not appear as a subword in any word of any length.     ¸

F 0 F 1 F 2 F 3 F 3

F 3

F n


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Lemma 1.2 : Word ending alternation of ab with ba
For n ≥ 1, the ending of the Fibonacci words alternates betweenab andba.
In fact, the Fibonacci word  ends inab whenn is odd and ends inba
when n is even.

F n

Proof
In general, if annth word ends inab, then the (n + 1)th word must end inaba
where thea on the end of the (n + 1)th word is generated by the substitution
acting on the endb of the nth word, and the (n + 1)th word's penultimateb is
generated by the substitution acting on the penultimatea of thenth word. On the
other hand, if annth word ends inba then the (n + 1)th word will end inab, this
being generated by the substitution acting on the enda of the nth word. This
proves the first part of the Lemma, that forn ≥ 1, the endings alternate between
ab andba. Now observe that  = ab. That is,  ends inab, from which it is
deduced that  ends inab whenn is odd. By further deduction, because of the
alternating nature of the endings,  ends in ba when n is even.             ̧

F 1 F 1

F n
F n

Lemma 1.3 : Exclusion from F of aaa
Of the eight possible three letter subwords that can be formed from the
letters a and b only aab, aba, baa and bab are subwords of the infinite
Fibonacci word. In particular the subword aaa can not occur.

Proof
The eight possible three letter subwords referred to are,aaa, aab, aba, baa, abb,
bab, bba and bbb. Of these, Lemma 1.1 excludes those withbb as a subword,
leaving, aaa, aab, aba, baa and bab.
We will now prove that aaa must be removed from this shortened list.
Clearly, aaa does not occur in  = ab.F 0 1 = a  or in  F
The basis for an inductive proof is established by noting that neither = aba
nor  = abaab contain the subwordaaa. Recall the property that any given
Fibonacci word is the concatenation of the two previous words. Our proof by
induction requires we assume that for any given with n ≥ 4, the two previous
words  and  do not containaaa. In forming , the aaa can only
occur at the seam of the concatenation of the two previous words.

F 2

F 3

F n
F n − 1 F n − 2 F n

Let the symbol : denote that seam.
Case 1 :The concatenation is ... a : aa ...
 This cannot happen as no word begins with aa, they all begin with ab.
Case 2 :The concatenation is ... aa : a ... 

This cannot happen as no word ends with aa, they all end alternatively
with ab and ba, by Lemma 1.2.

By induction, the subword aaa cannot occur in any Fibonacci word.
Furthermore, with aaa now also removed from the list, what remains is,

aab,  aba,  baa,  bab.
Inspection of  = abaababaabaababaababa demonstrates that no further
words should be removed from the list.             ̧

F 6
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1.4  Desubstitution
Lemma 1.1 and Lemma 1.3 provide simple examples of what is more generally
termedpattern avoidance. For the Fibonacci word it is said thatbb andaaa are
illegal subwords. In fact there are infinitely many other illegal subwords of
However, thankfully, the Fibonacci subwords have a desirable property that
means the other illegals are not of particular interest here. This property results
in it being easier to work out the legal status of a subword when the need arises
rather than have long lists of which subwords are, and which are not, legal. The
property is that of being readily amenable todesubstitution. To explain
desubstitution it first needs to be understood that we will end up wanting to
analyse alleged pieces of the infinite Fibonacci word. Typically, it will not be
known exactly where in the word the piece to be analysed is located nor, indeed,
if it is actually a legal piece of the Fibonacci word at all. Furthermore, if legal,
the piece could be in multiple possible locations, maybe even in an infinite
number of locations! Desubstitution provides a method of determining the legal
status of the piece. It is the act of inverse substitution; working out for a given
word, what previous word (or words) it could have arisen from.    

F .

Recall that the Fibonacci substitution θ is given by,

a → ab

b → a

where some colour has been added to assist with understanding a forthcoming
example. We can now reason that when desubstituting, any letterb along with
the lettera that must be to its left, must have come from a lettera in a preceding
word. Once all of the occurrences ofab have been dealt with, any remaining
occurrences of the letter a must have come from a letter b in the preceding word.
For example, suppose it is wishes to determine the legal status of the following
alleged piece of the Fibonacci word,

...abaabaababaabababa...
This would initially be scanned for any occurrence ofbb or aaa to check if it is
obviously illegal. As the word passes this initial scan the next step is to bracket
each occurrence of the letter b along with the a immediately to its left, like this,  

... (ab) a (ab) a (ab) (ab) a (ab) (ab) (ab) a ...
and now the desubstitution can be made which reveals the previous word to be,

...ababaabaaab...
The illegal subwordaaa is now in the desubstituted word and so it is deduced
that the alleged piece of the Fibonacci word being analysed is also illegal. More
examples of desubstitution will be given in chapter 2. For now, note that if the
word obtained from an initial desubstitution does not containaaa the
desubstitution process is repeated until eitheraaa does occur, or a sufficiently
short enough word that is clearly legal is obtained. The process will, of course,
eventually terminate in one of these two situations because the length of the
word reduces each time a desubstitution is applied. The astute reader may be
wondering why, other than in the initial scan, a lookout for the illegalbb is not
being kept. This is because ...aaa... desubstitutes to either ...bbb... or ...bba...
both of which contain the illegalbb and so, when desubstituting, the illegal
subwordaaa will always be encountered in the desubstitution before the illegal
subword bb can occur. 
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1.5  The Incidence Matrix
In general, a substitution,Φ, has associated with it a matrix termed itsincidence
matrix, M . For the Fibonacci substitutionθ, M  is of great utility in
determining information about the relative frequencies of the letters in the
infinite Fibonacci word and also in suggesting a natural tiling geometry that
flows from that word. We'll look first at determining relative frequencies.

Φ θ

Here is a standard definition of what an incidence matrix is;

A { a1, a2, ..., an }  For a substitution Φ acting on an alphabet   = of cardinality n,

Φ (mrc) mrc  the incidence matrix is defined to be the n × n matrix  M  =  where  is

ar Φ (ac)equal to the number of occurrences of in . (Taken from [GY21])

For the Fibonacci substitution, θ,

  θ = (  )a → ab
b → a   

 has incidence matrix  M 1 1
1 0

In M  the upper left1 indicates a single lettera in  and the lower left1
indicates a single letterb in . Similarly, the upper right 1 shows there is one
letter a in  and the lower right 0 that there was no letter b in .

θ θ (a)
θ (a)

θ (b) θ (b)
To better understand how this carries information about the letter frequencies of
the Fibonacci words, consider the word = abaababaabaababaababa and
observe that, using the notation defined previously,  = 13 and  = 8.

F 6

| a | | b |

  (  )6 = (  )  The connection with 1 1
1 0

13 8
8 5

is suggestive of the following,

Proposition 1.1 : Powers of an Incidence Matrix

Φ
n
Φ  ΦnIf  M  is the incidence matrix for Φ then  M   is the incidence matrix for .

Proof

  ΦIn general, the matrix M , which is of necessity square, has the form,

Φ = (  )M

a1

a2

...
ar

...
an

 m11  m12  ...  m1c  ...  m1n 
 m21  m22  ...  m2c  ...  m2n 
 ...  ...  ...  ...  ...  ... 

 mr1  mr2  ...  mrc  ...  mrn 
 ...  ...  ...  ...  ...  ... 

 mn1  mn2  ...  mnc  ...  mnn 

    Φ (a1) Φ (a2) ... Φ (ac) ... Φ (an)

where Φ is the substitution on an alphabetA = . The
scaffolding around the matrix (not routinely shown) is helping to illustrate that
thercth entry gives the number of times the letter occurs in  where  is
the cth letter in A.

{a1, a2, ..., ar, ..., an}

ar Φ (ac) ac

In the square of this matrix thercth entry is given by the scalar product of therth

row with the cth column;  
2
Φ (mrc) = mr1m1c + mr2m2c + ... + mrcmrc + ... + mrnmncM

which will be the number of times the letter  occurs in .ar Φ2 (ac)
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n
Φ.This establishes a basis for a proof by induction for the case n = 2 in  M

For the inductive step, assume that for n = k for some integer k ≥ 3, the rcth entry
k
Φ  ar Φk(ac) . of M gives the number of times the letteroccurs in Taking the scalar

rth Φ cth k
Φ product of the row of M  with the column of M gives how often the letter

ar Φk + 1(ac) . k +1
Φ  appears in So, the rcth entry of M represents the occurrences of

ath
r  Φk + 1(ac) . n

Φ Φn.       ̧the letter in  By induction, M   is the incidence matrix for 

The major implication of linking an incidence matrix to the Fibonacci word is
that results from Linear Algebra can be utilised. In particular, the incidence
matrix of the Fibonacci substitution has the desirable property of being
primitive. By definition, a real matrixM  is primitive if it is non-negative and its
mth power is positive for some natural numberm; That is, all entries ofM  are
strictly positive for somem ∈ . As it stands, the incidence matrix for the
Fibonacci substitution is non-negative as required but the zero in its incidence
matrix is an initial cause for concern!  However, it is  primitive because, for
example, its square is strictly positive;

m

Z+

(  )2 = ( )1 1
1 0

2 1
1 1

A substitution with a primitive incidence matrix is itself termed primitive. The
incidence matrix,M , of a primitive substitution has the marvellous property of
having a strictly positive simple eigenvalue,λ . In absolute value,λ  is strictly
the largest eigenvalue ofM , a fact that is a consequence of the Perron-Frobenius
theorem.  See[Q95, page 132] for a proof. Additionally,λ  has an associated
eigenvector with strictly positive entries. For an infinite fixed point of a
substitution, provided it is a primitive substitution, the relative frequencies with
which the various letters occur exist. Furthermore,λ  is the key to determining
their values. So, what are the relative frequencies with which the lettersa andb
occur in the infinite Fibonacci word, F ?

PF PF

PF

PF

To answer this question, note that the Fibonacci substitution's incidence matrix
has characteristic polynomial , yielding  where φ
denotes the golden ratio, an irrational number that has an exact value of,

λ2 − λ − 1 = 0 λPF = φ,

φ =
 1 +  5  

 2 
.

The relative letter frequencies are given by a right eigenvector  for
with sum of entries  .

(x, y)T λPF,
x + y = 1

Solving under these constraints yields,

x = relative f requency (a) =
 1 

 λPF 
  = φ − 1   (About 61.8%)

y = relative f requency (b) = 1 −
 1 

 λPF 
= 2 − φ  (About 38.2%)

Usefully, the ratio of  :   can be written as being preciselyφ : 1 and from
this follows a straight forward proof that the Fibonacci word is non-periodic.
This is presented next as Proposition 1.2.

| a | | b |
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Proposition 1.2 : Non-Periodic Nature of the Fibonacci Word
The Fibonacci word with letter ratio   :   of  φ : 1  is non-periodic.| a | | b |

       
 1 +  5  

 2 
.The golden ratio, φ, is an irrational number with an exact value of 

Proof
Assume that the Fibonacci word is strictly periodic in which case there would be
some partitioning of the word along the lines of, for example,

( aba...ab ) ( aba...ab ) ( aba...ab ) ( aba...ab )  ...
Within a partition, let the number occurrences of the lettera be p and the
number of occurrences of the letterb be q and note that from this construction
both p and q must be positive integers. 
The ratio of the occurrences of the two letters is thus given by p : q.

  
 p 
 q 

   p, q ∈ Z.  More revealingly, this ratio can be expressed as : 1 with  

A direct comparison is now made with the letter ratio φ:1 of the Fibonacci word.
 p 
 q 

,  is, from the definition,  a rational number, and so cannot equal φ.

Therefore the Fibonacci word, as claimed, must be non-periodic. ¸

+

Proving the Fibonacci word is non-periodic is not enough to also claim that it
has an aperiodic structure. To be aperiodic, we must rule out the possibility that
the Fibonacci word contain an arbitrarily large periodic part. By way of
explaining the need for this exclusion, consider the word that starts with fivea,
then alternates between b then a ad infinitum;

aaaaabababababab...
This is non-periodic but no more interesting than if it were. It is non-periodic via
an annoying technicality! To show that the Fibonacci word is not of this nature it
needs to be demonstrated that it does not contain arbitrarily large periodic parts,
which is what would makes it, by definition,aperiodic [Wik21a]. In 1983
Juhani Karhumäki, as part of a more general result, proved that in the Fibonacci
word no subword can occur more than three times in succession[Kar83]. This is
the property that makes the Fibonacci word so mathematically intriguing. 
A further subtlety, that will be encountered in chapter 2, is that any given
subword of  will occur an infinite number of times. This makes the Fibonacci
word an example of arecurrent word [Lot02 page 31]. Table 1.4 provides
examples of a recurrence, a square and a cube in the Fibonacci word.

F

 aba abab aaba abab a abab aaba abab aaba...F =
 a baababaa baababaa babaabaababaaba...F =
 abaababaa baaba baaba baaba ababaaba...F =

Table 1.4 : Upper : Any subword of the Fibonacci word, such as abab, occurs an infinite number
    of times but not more than three times in succession.

   Middle : The square; baababaa occurring twice in succession in the Fibonacci word.
    Lower : The cube; baaba occurring thrice in succession in the Fibonacci word.
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1.6  An Associated Tiling Geometry
The Fibonacci word can be visualised as a one-dimensional tiling. In striving to
find a tiling that is faithful to the word, two lengths of tile would seem logical,
tile A of length  representing a lettera and tileB of length  representing a
letterb. The inflation mapping,Θ, needs to inflate tileA to have a length that is
the sum of the lengths of a tileA plus a tileB and also inflate tileB to have the
length of a tileA. The tile length inflation geometry ofΘ can be summarised in a
manner that makes a correspondence with θ obvious, namely;

LA LB

LA → LA + LB

LB → LA

Previously, in our work of relative frequencies, it was the right eigenvector of
the incidence matrix that yielded the frequency information. In general, it turns
out, however, that when an associated geometry is sought, it is the left
eigenvector that is required. The eigenvalue required is againλ  because
this is the only eigenvalue with a modulus greater than unity, and so able to
yield the desired expansive mapping. If we arbitrarily assign a length of 1 to tile
B, then tileA will be of lengthφ. Figure 1.1 gives a summary of the resulting
inflation mapping.

PF  φ =

B

A

1

λA

1

λB

A

A B

φ φ2

φ

φ

Θ

Θ

Figure 1.1 : A summary of the inflation mapping, Θ, associated with the Fibonacci word.

To conclude this chapter, figure 1.2 presents the first few Fibonacci words as
one-dimensional geometric tilings of . The lengths are drawn to scale and
they have been given an arbitrary width in order they be seen.

R+

F 1

F 2

F 3

F 4

F 5

Figure 1.2 : The first few Fibonacci words represented as tilings on a line segment.
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1.7  Author's Notes on Chapter 1
The definition of mathematical beauty that launches the chapter is intended to be
provocative, and is somewhat tongue in cheek. I'm very aware of the joy that
mathematicians experience when working only with symbols, effortlessly
moving around a topic area with which they are highly familiar, bending it to
solve a problem or construct a proof, and without any recourse to a physical pen
and paper diagram. That this beauty is hidden to those outside of mathematics
prompted Samuel Eilenberg at Columbia University to once remark that,
“Mathematics is a performance art, but one whose only audience is fellow
performers”[PM16]. Possibly, this is a little less so since the advent of personal
computers in the 1980s and the spectacular visuals associated with some
branches of mathematics, in particular fractal geometry and the Mandelbrot set.
An earlier version of this chapter contained several proofs concerning the
structure of the Fibonacci word; that it is Sturmian, for example. However, I felt
that the overall effect was a loss of a clear direction, and so they were ruthlessly
removed to sharpen the focus upon what was necessary to prepare the
groundwork for the remainder of this dissertation. In a similar vein there was felt
to be no need to introduce left, two-sided, or periodic fixed points.
Doorways to mathematically deep waters abound in this material. For example,
when analysing words that arise as the fixed points of substitutions under
iteration, just how effective desubstitution can or can't be is termed
recognizability, and is an active area of current research. See, for example
[Kyr19, Chapter 3]. Pattern avoidanceas a general phenomenon is another
example of a vast subject area in which active research is ongoing. See, for
example  [Ram04], [Ram12]. 
My initial understanding of the material covered in this chapter stems from The
Open University's topic guide (not available outside of the University) to their
courseAperiodic Tilings and Symbolic Dynamics, written by Reem Yassawi and
the late Uwe Grimm [GY21].
I would like to thank Dan Rust of The Open University for his valuable
comments on an early draft of this chapter and in particular his recommendation
that I wield an editor's knife to remove that which didn't need to be there.
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Chapter 2

Iterated Function System Drawing Rules

2.1  Mathematical DNA 
One of the wonders of the modern age is the discovery that each living creature
has the blueprint of its construction, development, function and reproduction
within itself, in each of its cells in a molecule called DNA. In essence this long
molecule, twisted with an antiparallel copy of itself as a double helix, can be
represented as a one-dimensional string of letters. The letters represent the four
different basic units of DNA, the nucleotides with a base of either thymine,T,
adenine,A, guanine,G or cytosine,C. In figure 2.1 an example of a DNA
segment is given. It is the sequencing of these four letters, over three billion of
them in human DNA, that is the biological code at the centre of what a creature
is and can become.

ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAAGAACCGGC
Figure 2.1 : An example of a segment of DNA

With the foregoing in mind, it's reasonable to wonder if the Fibonacci word can
be used as the code to produce another mathematical entity. Indeed, that is
exactly that was achieved in chapter 1 with the Fibonacci words being viewed as
tilings of line segments. Rather than that being the end of the matter, this chapter
will take the idea forward with some further exploration of the idea.
In biology the concept of a string rewriting system is attributed to Aristid
Lindenmayer. This Hungarian biologist sought a method to describe elementary
plant development, publishing his thoughts in 1968[Lin68]. Today referred to
as L-systems, their grammar, G, is a collection of the following three parts;

• An alphabet, V, of symbols.

• A string of symbols ω defining the system's initial state.

• A set of production rules, P, specifying how a next string is produced
   from a previous string.

By repeatedly applying the rules,P, anL-system generates a sequence of strings
in a similar fashion to the generation of the Fibonacci words where,

G = (V , ω, P) = (A , a, θ)
and where, A = { a, b }, ω = “a” and θ is the substitution a → ab, b → a.
In 1986, the Polish computer scientist Przemyslaw Prusinkiewicz formalised the
mathematics ofL-systems and the interpretation of the strings as drawing
instructions for a “turtle”, the on-screen drawing pen controlled by a computer
running the 1980s popular programming language LOGO [Prz86]. 
The enthusiasm at the time was to producefractals following the publication in
1982 of Benoit Mandelbrot's “The Fractal Geometry of Nature”[Man82]. In this
chapter the Fibonacci words are interpreted via a one dimensional drawing rule.
The resulting visualisations are not thought to have been seen or explored
previously. They give intriguing methods of revealing aspects of, and
symmetries within, the Fibonacci words.
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2.2  The To and Fro Drawing Rule
Essentially, theL-system iterative generation of the Fibonacci word was taken
care of in chapter 1. Attention here can focus on drawing rules. Table 2.1 gives
the first rule to be considered. It produces, from a new perspective, the tiling of
section 1.6 along R . This could be regarded as an identity drawing rule.+

Symbol Action

a forward φ

b forward 1                                                       

Table 2.1 : Identity drawing rule

By adding a simple about turn to the midpoint of eachb tile the to and fro
drawing rule of table 2.2 is created. This rule is believed to be previously
unexplored and is what we shall focus on throughout this chapter.

Symbol Action

a forward φ                                                          

b forward 0.5, turn 180°, forward 0.5

Table 2.2 : To and fro drawing rule.

When the to and fro drawing rule is applied to the Fibonacci word a tiledpath
results that repeatedly overwrites itself on a one-dimensional line. To see what is
going on, figure 2.2 makes use of the otherwise vacant second dimension, giving
a deviation from zero diagram. It shows the rule applied toF  giving a tiled path
running fromA to B. Each tile has acontrol point at its midpoint, added to
enhance the ease with which a reader can see what is going on. As the path
descends in a zigzag fashion artificial regions are created, coloured purple.
These are bounded by the path and an artificialy-axis (shown red) and give an
impression of how much each zig and zag swings away from the origin. 

6

−4 −2 2 40

1 2 1 52 6 2 2

A

B

Mirror Line

Figure 2.2 : TheF  deviation from zero diagram from the to and fro drawing rule. To see the
back and forth motion along a one-dimensional line the path is presented as a two-dimensional
zigzag. The numbers at the foot of the diagram tally the number of tile control points at each
possible value ofx that such points occur. Originally, it was intended to explore the mathematics
of these tallies but that become sidelined as interest shifted to the swings back and forth about
the artificial y-axis. The control point tallies have been left in for a possible future analysis.

6
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A striking feature of figure 2.2 is that, with the last two tiles greyed out, the
deviation from zero diagram has reflection symmetry in the mirror shown as a
broken line. Such a line must pass through the centralb tile of a palindromic
word. Table 2.3, below, suggests that palindromic words feature in all Fibonacci
words, some with a central letterb, others with a central lettera, and some with
an empty central letter. The words are coloured to highlight these observations.

F n = θn (a)
 = abF 1

 = abaF 2

= abaabF 3 
 = abaababaF 4

 = abaababaabaabF 5

 = abaababaabaababaababaF 6

 = abaababaabaababaababaabaababaabaabF 7

Table 2.3 : The last two letters of each Fibonacci word shown are greyed out.What remains is a
palindrome in one of three types in a repeated modulo 3 sequence of an empty central letter, then
a central letter a, then a central letter b.

Lemma 2.1 : Palindromic Nature of The Fibonacci Word
Fibonacci words  with the last two letters removed are palindromic, n ≥ 1.F n

Proof

Let  be the Fibonacci word  with the last two letters removed for n ≥ 1.W n F n
Then  is the empty word,   and  = aba which are palindromes.W 1 W 2 a = W 3

We thus have a basis for a proof by strong induction.
Assume when n ≤ k for some constant k ≥ 3, are palindromic.W k 
Consider the finite Fibonacci word   and recall that,F k + 1

F k + 1 = F k F k − 1    

= F k − 1 F k − 2 F k − 1

The Fibonacci words, as observed previously in Lemma 1.2, end alternatively
with the letters pairs ab and ba. 
Case 1 : ends in ab in which case   ends in ba and so, F k − 1 F k − 2

    F k + 1 = W k − 1 (ab)  W k − 2 (ba)  W k − 1 (ab)

W k + 1 = W k − 1 (ab)  W k − 2 (ba)  W k − 1 .  which is a palindrome

Case 2 : ends in ba in which case   ends in ab and so, F k − 1 F k − 2

    F k + 1 = W k − 1 (ba)  W k − 2 (ab)  W k − 1 (ba)

W k + 1 = W k − 1 (ba)  W k − 2 (ab)  W k − 1   which is a palindrome.

In both cases,  is a palindrome. W k + 1

By strong induction the proof is complete.             ̧
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Lemma 2.2 : The Central Letter of a Palindromic Word

Let  be the Fibonacci word  with the last two letters removed, n ≥ 1.W n F n
By Lemma 2.1,  is a palindrome.W n
Furthermore, the central letter of this palindrome is,

• empty if n ≡ 1 (mod 3)

• a         if n ≡ 2 (mod 3)

• b if n ≡ 0 (mod 3)

Proof
For  = ab,  is empty and so has an empty central letter with n ≡ 1 (mod 3).F 1 W 1

For   and so has central letter a with n ≡ 2 (mod 3).F 2 = aba,  = aW 2

For = abaab,  = aba and so has central letter b with n ≡ 0 (mod 3).F 3 W 3

The above three statements establish a basis for an inductive proof.
Assume whenn ≤ k for some constantk ≥ 3, has an empty central letter
whenk ≡ 1 (mod 3), a central lettera whenk ≡ 2 (mod 3 ) and a central letterb
when k ≡ 0 (mod 3).

W k 

Consider the construction used in Lemma 2.1, namely,

F k + 1 = F k F k − 1  

= F k − 1 F k − 2 F k − 1

= W k − 1 (uv)  W k − 2 (vu)  W k − 3 (ab)

W k + 1 = W k − 1 (uv)  W k − 2 (vu)  W k − 1 
where uv is a letter for letter replacement for one of ab or ba.
This shows that the palindrome  has the same central letter as W k + 1 W k − 2

Strong induction now completes the proof.             ̧

From a broader perspective, Lemma 2.2 can be viewed as a consequence of long
established theorems from the number theory of Fibonacci numbers. One
relevant result is that the Fibonacci number sequence modulon is periodic. The
length of the period modulon is denotedπ(n). It is termed thenth Pisano period
[Wik21c]. The fact proven in Lemma 2.2, that the central letter of
repeatedly cycles through three possibilities, stems from π(2) = 3.

W n

An implication of Lemma 2.2 is that, after  the next Fibonacci word with
mirror symmetry through aB tile is  and figure 2.3 suggests this is so, subject
to checking the “in between” deviation from zero diagrams for  and . 

F 6,
F 9

F 7 F 8

A little thought, as captured by figure 2.4, indicates that in order to be,
• palindromic

• without the illegal double B or triple A tiling combination
they will have to have half turn rotational symmetry about either the empty
central tile or the centralA tile (and thus, in both cases, not have mirror
symmetry). Figure 2.5 shows  where the half turn rotational symmetry is
centred on thezero deviation line. This is the line of the artificialy-axis
representing the origin ofR . Figure 2.6 shows  and again, as expected, it has
half turn rotational symmetry but this time not centred on the zero deviation line.

F 7

+ F 8
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−4 −2 2 40

4
7 6

22
2

17
4 2

Mirror Line

8
10

4
2

1
Figure 2.3 : The deviation from zero diagram for , under the to and fro drawing rule. Like
that for  (figure 2.2) it has a line of mirror symmetry through a central letterb of its
corresponding palindromic word ( ).

F 9

F 6

W 9

n (mod  3) ≡ 0 n (mod  3) ≡ 1 n (mod  3) ≡ 2

Figure 2.4 : The possibleconfigurations at the centre of the palindromic words,, associated
with the Fibonacci words, .

W n
Fn
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−4 −2 2 40

2
3 2

9
1

8
2 4

2
1

Figure 2.5 : The deviation from zero diagram for  under the to and fro drawing rule with the
 centre, corresponding to an  has

half-turn rotational symmetry about its centre which is on the zero deviation line (shown red).

F 7

W 7 n (mod 3) ≡ 1 case (figure 2.4) highlighted in orange.W 7

−4 −2 2 40

2
3 4

14
1

8
2 2 5

8
3

2
1

Figure 2.6 : The deviation from zero diagram for  under the to and fro drawing rule with the
 centre, corresponding to an  has

half-turn rotational symmetry about its centre but, unlike figure 2.5 for this centre is not on
the zero deviation line (shown red).

F 8

W 8 n (mod 3) ≡ 2 case, (figure 2.4) highlighted in orange.W 8

F 7,
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2.3  About The Zero Deviation Line
The to and fro drawing rule was so named because of the manner in which the
one-dimensional path swings repeatedly from one side of the origin to the other
then back alongR. It's natural to wonder how far away from the origin it can
swing and what are the characteristics of the possible deviations away from the
origin. To get a feel for such “bigger picture” questions, we need to look at
longer Fibonacci words as, with iteration in general, emergent behaviours are
not necessarily obvious from the first few iterations of the system. The deviation
from zero diagram for  (a “longer word”) is given in figure 2.7 where the
individual tiles and control points are no longer shown, only the areas enclosed
by them and the zero deviation line. 

F 11

− 4 4

Figure 2.7 : The deviation from zero diagram for  under the to and fro drawing rule. This
was drawn by a computer running the LOGO programming language. Samples of the code
written are presented in Appendix A.

F 11
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At first sight, figure 2.7 looks complicated but once the seemingly different
structures within it are isolated, there are remarkably few. These are given in our
next diagram, figure 2.8, and each assigned a catalogue identifier. 

D 1

D 2

D 3

D 4

D 5

Figure 2.8 : All five of the seemingly different structures evident in the deviation from zero
diagram for  under the to and fro drawing rule.F 11

One could be forgiven for expecting more complicated structures to start to
occur as the length of the Fibonacci word increases. Pondering figure 2.8,
however, suggests an alternative viewpoint; what is emerging is an ever larger
piece of a single structure.
The realisation there may only be a single fundamental structure underpinning
all of the Fibonacci words rather begs the question of why some other structures
have not appeared and, indeed, why they cannot do so as the word length is
increased further. Figure 2.9 gives an example of a simple structure that has not
occurred in any of the deviation from zero diagrams up to and including.
So, will this specific structure eventually pop up in a Fibonacci word, one not
yet investigated, or can it never occur?

F 11

...  a  a  b  a  b  a  b  a  a  ...

↓  ↓     ↓     ↓   ↓  ↓

... b    a       a      a   b   a ...

E1

Figure 2.9 : Desubstitution shows that  is an excluded structure that can never occur.E 1

The key to answering the question is to desubstitute the part of the word
associated with the structure.  This desubstitution process was described earlier
in section 1.4. Here it gives ...baaaba... as the previous word. The triplea is
illegal and the inescapable conclusion is that this structure can never occur.
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A piece of word associated with a structure, or a proposed structure, will be
referred to as anembedded word. This is because, when desubstitution is
applied, it may be necessary to speculate upon what the letters immediately
before or after the embedded word might be. It does not necessarily have a fixed
start or finish. A desubstitution may need to be applied repeatedly to determine
the legal status of an embedded word. For example the embedded word
...aababaabaabaaba... after two successive desubstitutions is shown to be illegal
because it would have had to come from a word with the illegal triplea in it.
Figure 2.10 provides the details.

... a  a  b  a  b  a  a  b  a  a  b  a  a  b  a  ...
↓  ↓     ↓   ↓    ↓   ↓   ↓   ↓    ↓   ↓

... b    a      a     b    a    b    a    b     a  ( )  ...a
b

↓          ↓ ↓        ↓         ↓        ↓
... a    b          a          a          a         ( )  ...a

b

E2

Figure 2.10 : It takes two successive desubstitutions to show this structure can never occur. The

brackets  are used to show that the letter immediately to the right of the embedded word could

alter the letter at that end of the desubstituted word; one of an a or b could be in that location.

( )a
b

Figure 2.11 gives an example where it takes three successive desubstitutions to
show that the embedded word ...aababaababaababaaba... is illegal.

E3

... a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a ...
↓  ↓      ↓  ↓   ↓      ↓   ↓   ↓     ↓   ↓    ↓    ↓

... b    a       a   b    a       a    b    a       a    b     a  ( )  ...a
b

↓  ↓         ↓    ↓          ↓     ↓         ↓          ↓
... a     b         a      b           a       b          a          ( )  ...a

b
 ↓              ↓                 ↓                  ↓

    a                 a                    a                   ( )a
b

Figure 2.11 : It takes three successive desubstitutions to show this structure can never occur.

Desubstitution provides a mechanism to test proposed structures for their
legality. When applied, its effectiveness when dealing with the Fibonacci word
stems from the fact that the possible desubstitutions are often unique or only
uncertain at one end. This may not be the case with other substitutions.  
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2.4  Charting Growth
The desubstitution method described in section 2.3 can be thought of as a “top
down” method of analysing a proposed structure's legality. However, it's a
“stabbing in the dark” method of trying to find structures. They need to be
guessed first, then their validity checked via desubstitution. A more systematic
approach to producing a catalogue of structures is to work “bottom up” and
produce agrowth chart of all the ways in which structures can legally be
constructed. Figure 2.12a shows the start of a methodical, thorough and robust
search for all possible deviation from zero structures. 

→
↓ ↓

→

↓

→

↓

↓
→ D 1

D 2 D 3

D 4

G0

G1
G2 G3

G4

G5

↓

G6

↓

G7

↓

D5

G8

→

G9

↓

↓
G10

Figure 2.12a : The start of the growth chart, mapping all possible deviation from zero structures
of less than thirty tiles.

Rather than add one letter and its associated tile each time, the growth chart
speeds the process up by adding either three or five. This relies on the fact that
the Fibonacci word can be factorised in the following manner;

F = (aba) (aba) (baaba) (aba) (baaba) (baaba) (aba) ...
where the only factors involved areaba or baaba. Observe that in the growth
chart when moving from one diagram to the next either the tilesABA or BAABA
has been added to a previous tiling path (once past the initial terms). The
factorisation guarantees that one ofABA or BAABA can always be added.
Occasionally both are valid which gives branching, at  for example.G 3
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The growth chart shows that the structures already observed in figure 2.8 (that
is,  and ) are the only structures of less than thirty tiles that
can exist. As the arrow at the foot of figure 2.12a indicates, the growth chart
continues. Before presenting the extension, it was felt to be prudent to prove the
claimed factorisation of the Fibonacci word. There is considerable literature on
the topic of factorising words similar to the Fibonacci word. For example, Amy
Glen's 2006 PhD thesis is devoted entirely to various decompositions of words
(with similar properties to the Fibonacci word) into factors, with an emphasis on
palindromic factorisations[Gle06]. However, for our modest needs, at this stage,
a less general and more targeted proof will suffice.

D 1, D 2, D 3, D 4 D 5

Theorem 2.1 : The aba, baaba Factorisation of F
The Fibonacci word can be factorised into the form,

F = (aba) (aba) (baaba) (aba) (baaba) (baaba) (aba) ...
where the only factors involved are aba or baaba.

Proof
First observe that all occurrences of (baaba) can be further factorised as
(ba)(aba) and that this is an unambiguous reversible piece of algebraic
manipulation within the context of the Fibonacci word where the leftmost factor
is an aba. Thus the claim is equivalent to proving that,

F = (aba) (aba) (ba) (aba) (aba) (ba) (aba) (ba) (aba) (aba) ...
where the only factors involved are aba or ba.
All Fibonacci words,  begin with aba for n ≥ 2.F n

Let  be  with that leading aba removed for n ≥ 2.F ∗
n F n

Inductive base:  = (ab),  = (aba) and  = (aba)(aba)(ba).F 1 F 2 F 4

Assume whenn ≤ k for some even constantk ≥ 4, (and hence ) factorise
as claimed.

F k  F ∗
k  

Case 1 : F EVEN

F k + 2 = F k + 1 F k   k is even

= F k F k − 1 F k

= F k F k − 2 ... F 6 F 4 F 2 F 1 F k

= F k F k − 2 ... F 2 (ab) (aba)  F ∗
k

= F k F k − 2 ... F 2 (aba) (ba)  F ∗
k

Case 2 : FODD

 F k + 1 = F k F k − 1          k  is still even

= F k F k − 2 F k − 4 ... F 6 F 4 F 2 F 1

= F k F k − 2 F k − 4 ... F 2 (ab)

  The result for    now follows by strong induction and for    the wordsF EVEN FODD

factorise as required except for a factor of (ab) at the end of each word. The
infinite Fibonacci word is the word formed asn → ∞. and so, in the limit, all
words factorise as claimed. The proof of Theorem 2.1 is complete.            ̧
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When working with an embedded word, there is ambiguity over whether the
extension to the right of the word, which will always end withaba, is followed
with an aba or baaba and so desubstitution is deployed each time the word is
extended to determine which is legal. In fact, on occasion bothaba andbaaba
can be legal extensions to the word, and hence give two valid extensions to the
associated tiling path. This gives rise to the branching phenomenon observed in
the growth chart. However, by Theorem 2.1. at least one will always be legal.
Any illegal case always leads, via desubstitution, to the illegal aaa. 

Everything is now in place to extend the growth chart started in figure 2.12a,
and this extension is presented over the next few pages.

G10

↓

G11

↓

G12

↓

G13

↓

→

G14

G15

↓

G9

Figure 2.12b : The continuation of the growth chart started in figure 2.12a.
           A further continuation is in figure 2.12c.
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↓ ↓

G16

↓

G17

↓
G18

↓

G19

↓
G20

G21

G14

G15

↓
G13

↓
G12

Figure 2.12c : The continuation of the growth chart from figure 2.12b.
          The next continuation is in figure 2.12d.
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↓

D 6

↓

G22

↓

↓ ↓

G20
G21

G19G18

Figure 2.12d : The continuation of the growth chart from figure 2.12c.
          It shows the deviation from zero structure, .D 6

The growth chart presented across the four figures 2.12a, 2.12b, 2,12c and 2.12d
has determined all possible deviation from zero structures up to the 67 tiles of

 and the 64 tiles of . The growth chart could be continued further. In fact,
it would seem likely that the aperiodic nature of the Fibonacci word guarantees
it will continue indefinitely. All the structures found continue to suggest that
they are simply increasingly large chunks of an underpinning single structure.  

D 6 G 22

2.5  Exploring the n ≡ 0 (mod 3) Case
Two facts that give rise to some speculative thoughts are, firstly, that for the
Fibonacci words with n ≡ 0 (mod 3), the associated palindromic words
have mirror symmetry about a centralB tile. Secondly, as all words start on the
zero deviation line, the mirror symmetry guarantees that with n ≡ 0 (mod 3)
will end on it too. In consequence, with the tiling path thus pegged to the zero
deviation line at either end, it is reasonable to postulate that the maximum

F n  W n

W n
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deviation away from the zero deviation line is predisposed to occur somewhere
towards the centre of the word. As noted in figure 2.4, with n ≡ 0 (mod 3)
has a central tiling configuration ofABA. Theorem 2.1, theaba, baaba
factorisation of theorem, can now be applied. Some care is needed, as the
ABA matches up to anaba in  that is at the right hand end of a factor (baaba).
The aim now is to produce a growth chart, moving outward from the centralaba
and figure 2.13 is the result.

W n

F
F

D 6

↓

↓

D2D1
↓

D 3

↓

D 4

↓ D 5K 1

↓

K 2

↓

K 3

K 4

↓

↓

Figure 2.13 : The tiling growth chart, moving outward from a centralABA, where it is
reasonable to speculate the maximum deviation away from the zero deviation line occurs.
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From figure 2.13 it is immediately obvious that this is, by far, a most efficient
way of determining the possible deviation from zero structures that can occur. In
producing figure 2.13, the tilings were first worked out in words. In practice, at
each step, it was easiest to work out if the next factor to the right should be (aba)
or (baaba) and then add the letters to the left that kept the required mirror
symmetry. The bracketing of the factors when extending to the left is not always
immediately obvious until a subsequent step has been taken. Desubstitution is
used to ensure the legality of each step of the growth.

b  
aba  

a)(baaba)(aba)
a)(baaba)(baaba)(aba)(baaba)

aba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)
  a)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)(aba)

      aba)(aba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)
      a)(baaba)(aba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(baaba)(aba)(baaba)(aba)

Figure 2.14 : The first few stages of the tiling growth chart (of figure 2.13) moving outward
from a centralABA, but in words rather than tiles. How the words extend was determined first,
then the growth chart tiling drawn. This was because desubstitution needed to be repeatedly used
to check which of the two possible extensions to the right was the legal one.

From how the growth chart has been constructed, or simply from looking at the
tilings (figure 2.13) or the words (figure 2.14) it is clear that what is being
"crawled along" with the extension to one end and its palindromic reflection to
the other, is a piece of the fixed point of the iteration. This is not a surprise once
it is noticed that,

F 3m = F 3m − 1 F 3m − 2 m ∈ Z,  m ≥ 1

= F 3m − 2 F 3m − 3 F 3m − 2.
This shows that a previous word of the form for n ≡ 3 (mod 3) is contained
centrally in a subsequent word of that same form. In fact, because of the iterative
nature of the process, it is contained centrally inall subsequent words of that
same  form.  Figure 2.15  depicts  some  specific  examples; = ,

 =   and  = . Colour and superposition are used to
show the relationship between them. As figure 2.15 suggests, these separate
results can be nested and we can write, for example, that,

F n

F 6 F 4 F 3 F 4

F 9 F 7 F 6 F 7   F 12 F 10 F 9 F 10

F 12 = F 10 F 7 F 4 F 3 F 4 F 7 F 10     
This discussion readily generalises and is succinctly summarised by Lemma 2.3
as a formal result which will prove useful in the next section. 

Lemma 2.3 : Centralised Recursive Embedding of F 3

F 3m = F 3m − 2 F 3m − 5 ... F 7 F 4 ( F 3 )  F 4 F 7 ... F 3m − 5 F 3m − 2 m ∈ Z+

Proof
As this is a straight forward proof by induction, it is left as an exercise for the
interested reader.             ̧
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F3
F

6

F9

F12

Figure 2.15 : An illustration of how the shorter words appear at the centre of subsequent words
when working only with words wheren ≡ 0 (mod 3). Sometimes the tiling path associated
with a word needs reflecting before being overlayed. When such reflections are needed will be
explained later. Colour is used to show how in the previous words ,  and  occur.
One could say that  is embedded in  which is embedded in which is embedded in .
This figure was drawn by a computer running the LOGO programming language (Appendix A).

F n 

F 12 F 3 F 6 F 9

F 3 F 6 F 9 F 12
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2.6  How Far From the Origin ?
For this final section of chapter 2, we return to a question raised earlier
regarding how far from the origin the zigzag path can go. From a broad
perspective, given that the Fibonacci word is aperiodic, it can be argued that,
given any distance from the origin, the path will eventually exceed that distance.
This is because being aperiodic means there can be no extended periods of
repetition, no arbitrarily large periodic parts. This is seemingly at odds with the
deviation from zero diagrams which have revealed a path having a nature that
seems somewhat hesitant in moving away from the zero deviation line. The
question is thus morphing into one about what mechanisms cause the wandering
to, overall, have a maximum deviation away from the line that moves ever
outward as then in  tends towards infinity. One key idea is to determine if a
Fibonacci word represents adirection reversal or direction sustain. In other
words, does it set up a subsequent piece of path to initially progress in the same
direction or the opposite direction? Figure 2.16 gives two examples one with a
direction sustain and one with a direction reversal.

F n

⇒

⇐

⇒

⇒

Figure 2.16 :
To the left is  which sets up the next piece of path to flow in the same direction.F 6

To the right is  which sets up the next piece of path to flow in the opposite direction.F 7

Clearly, a word will represent a direction reversal if there are an odd number of
the “about turn” instruction. That is, an odd number of letterb in the word. It has
already been observed (in table 1.1) that the number of letterb in a word is in
the Fibonacci number sequence and so, by considering this modulo 2, it is
revealed if any given Fibonacci word represents a direction sustain or direction
reversal. Table 2.2 shows the pattern that emerges.

Word F 1 F 2 F 3 F 4 F 5 F 6 F 7

N° of b 1 1 2 3 5 8 13

N° of b ( mod 2 ) 1 1 0 1 1 0 1

S or R R R S R R S R

Table 2.2 : Fibonacci words are one of either direction sustain, S, or direction reversal, R.

As the number ofb in a word is the sum of the number ofb in the two previous
words, the simple rules for combining odd and even numbers under addition
guarantees that is a direction sustain word whenn ≡ 0 (mod 3) and a
direction reversal word otherwise.

F n 
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The second key idea is to determine the overall one-dimensional vector
displacement, , between the start and finish of the path associated with
relative to its initial direction. Recall, an A tile has length φ, the golden ratio. 

F n
→

F n

For a word  with n ≡ 0 (mod 3), the associated tiling path for  has to both
start and finish on the zero deviation line. This is because it's palindromic with
mirror symmetry about a central letterb. The fact that words withn ≡ 0 (mod 2)
end in ba and words with n ≡ 1 (mod 2) end in ab give us, in combination. that,

F n W n

F n
→

=






   








   n ≡ 0
+ φ,  Sustain for n ≡ 0 (mod 6)

− φ,  Sustain for n ≡ 3 (mod 6)
for   (mod 3)

Figure 2.17 shows the four possible situations that can arise.

⇒

⇒

...

...
⇒

⇒

...

...
⇒

⇒

...

...
⇒

⇒

...

...
............

n ≡ 0 (mod  6)
Initial Face Right

n ≡ 0 (mod  6)
Initial Face Right

n ≡ 3 (mod 6)
Initial Face Left

n ≡ 3 (mod 6)
Initial Face Lef t

+ φ  Sustain + φ  Sustain− φ  Sustain − φ  Sustain

Figure 2.17 : The four possible displacements relative to the initial direction for n ≡ 0 (mod 3).

 
For a word  with n ≡ 1 (mod 3), the associated tiling path for  has to both
start and finish on the zero deviation line (because it's palindromic with half turn
rotational symmetry, and has centre on the zero deviation line about a central
empty word flanked on either side by ana).  This time, drawing on the fact that
words withn ≡ 0 (mod 2) end inba and words withn ≡ 1 (mod 2) end inab give
us, in combination, that,

F n W n

F n
→

=






   








   n ≡ 0
+ φ,  Reversal for n ≡ 1 (mod 6)

− φ,  Reversal for n ≡ 4 (mod 6)
for   (mod 3)

Figure 2.18 shows the four possible situations that can arise.

Initial Face Right Initial Face Right Initial Face Lef t Initial Face Left
n ≡ 1 (mod 6)

⇒

⇒

...
......

n ≡ 1 (mod 6)

⇒

⇒

...

... ...

n ≡ 4 (mod 6)

⇒

⇒

...
...... ⇒

⇒

...

... ...

n ≡ 4 (mod 6)

− φ  Reversal+ φ  Reversal − φ  Reversal + φ  Reversal

Figure 2.18 : The four possible displacements relative to the initial direction for n ≡ 1 (mod 3) .
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All of the pieces are in place to work through an example that keeps track of a
specific tiling's progress away from the zero deviation line by looking at a
special decomposition of the word associated with that tiling.
The focus is upon words of the form  with n ≡ 0 (mod 3) to which Lemma 2.3
on the centralised recursive embedding of  can be applied.  

F n
F 3

As an example consider  which, by Lemma 2.3, decomposes as, F 15

F 15 = F 13 F 10 F 7 F 4 F 3 F 4 F 7 F 10 F 13

Notice that all the words about the central are of the formn ≡ 1 (mod 3).
Now to track how far from the zero deviation line the end of each of the tilings
associated with the individual component words lie.

F 3

Table 2.3 presents the calculation.

Component of F 15 F 13 F 10 F 7 F 4 F 3 F 4 F 7 F 10 F 13

Initial direction ⇒ ⇐ ⇒ ⇐ ⇒ ⇒ ⇐ ⇒ ⇐

Relative displacement + φ − φ + φ − φ − φ − φ + φ − φ + φ

Final direction ⇐ ⇒ ⇐ ⇒ ⇒ ⇐ ⇒ ⇐ ⇒

Overall displacement + φ + 2φ + 3φ + 4φ + 3φ + 2φ + φ 0 φ− 

Table 2.3 : Tracking how far away from the zero deviation line the end of each component part
lies. The relative displacements are relative to the initial direction.

As a check on the table 2.3 calculation, notice that, overall, is determined to
be ( φ, Sustain), which is as it should be. Such tracking calculations are at the
heart of  Theorem 2.2, the culminating highlight of this chapter.

F 15

→

−

Theorem 2.2 : Infinite Wandering Of  From The Zero Deviation LineFn
Given a distance, for convenience expressed as an integer multiple of φ, the
to and fro tiling path associated with the Fibonacci words  will eventuallyF n
exceed that (one dimensional) distance away from the origin for sufficiently
large enough n where n ≡ 0 (mod 3).

Proof
Two results to be used are, first, as noted above,

F n
→

=


















   

+ φ,    Sustain for n ≡ 0 (mod 6)

+ φ,  Reversal for n ≡ 1 (mod 6)

− φ,    Sustain for n ≡ 3 (mod 6)

− φ,  Reversal for n ≡ 4 (mod 6)

and secondly, from Lemma 2.3,

F 3m = F 3m − 2 F 3m − 5 ... F 7 F 4 ( F 3 )  F 4 F 7 ... F 3m − 5 F 3m − 2 m ∈ Z+

The proof uses these two results in each of two cases, one corresponding to
wandering off to the right when 3m ≡ n ≡ 3 (mod 6) and the other corresponding
to wandering off to the left when 3m ≡ n ≡ 0 (mod 6).
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Case 1 : Wandering off to the right.
For 3m ≡ n ≡ 3 (mod 6) the generalised calculation will be as table 2.4 shows.

Component of F 3m F 3m − 2 F 3m − 5 ... F 4 F 3 F 4 ... F 3m − 5 F 3m − 2

Initial direction ⇒ ⇐ ... ⇐ ⇒ ⇒ ... ⇒ ⇐

Relative displacement + φ − φ ... − φ − φ − φ ... − φ + φ

Final direction ⇐ ⇒ ... ⇒ ⇒ ⇐ ... ⇐ ⇒

Overall displacement + φ + 2φ ...   1)φ(m −   2)φ(m −   3)φ(m − ... 0 − φ

Table 2.4 : Generalised accountancy for how far away from the zero deviation line the end of
each component part lies for 3m ≡ n ≡ 3 (mod 6).

Case 2 : Wandering off to the left.
For 3m ≡ n ≡ 0 (mod 6) the generalised calculation will be as table 2.5 shows.

Component of F 3m F 3m − 2 F 3m − 5 ... F 4 F 3 F 4 ... F 3m − 5 F 3m − 2

Initial direction ⇒ ⇐ ... ⇒ ⇐ ⇐ ... ⇒ ⇐

Relative displacement  φ− + φ ... − φ − φ − φ ... φ+  φ−

Final direction ⇐ ⇒ ... ⇐ ⇐ ⇒ ... ⇐ ⇒

Overall displacement  φ−  φ− ...  (1 − m)φ  (2 − m)φ )φ (3 − m ... 0 + φ

Table 2.5 : Generalised accountancy for how far away from the zero deviation line the end of
each component part lies for 3m ≡ n ≡ 0 (mod 6).

Let dφ be an integer multiple of φ.
This is then the fixed distance away from the origin that is to be exceeded.
Let m = d + 1.
Consider the word , decomposed according to Lemma 2.3, in which the start
of the tiling associated with the centrally embedded will be at a distancedφ
from the origin and orientated to project a furtherφ + 0.5 units away from the
origin. The tiling associated with thus exceeds the distancedφ from the
origin.             ̧

F 3m
F 3

F 3m  

Interestingly, Theorem 2.2 would yield the same conclusion it the length of the
A tiles where reduced from φ to 1. 
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2.7  Author's Notes on Chapter 2
Chapter 2 presents, as far as I know, some original mathematical research and
has striven to both introduce an innovative visualisation of the Fibonacci word
and prove new results in response to what was observed. The majority of the
techniques involved are mainstream symbolic dynamical combinatorics on
words manipulations. Thus, it was felt appropriate to see where the new ideas
went, and show the techniques being applied in an unfamiliar setting.
Throughout this chapter there is a fascinating interplay of local rules giving rise
to global behaviours and constraints. The Fibonacci word is often described in
the literature as “an aperiodic word of minimal complexity”. Even so, it was
fascinating to realise that a single structure was emerging in spite of initially
setting out with the expectation of finding and cataloguing a variety. In
retrospect, I have seen this phenomenon elsewhere, when a carefully chosen
symmetric piece of a tiling, apatch, provides an elegant way of producing, via
the iteration of a substitution, a tiling of the plane,R . The key aspect is that the
patch is associated with a selected part of a fixed point. In this chapter that
selected part is termed an embedded word.  By way of a specific example of a
similar situation occurring elsewhere, see figure 2.19, and for the full details of
this “Chair Substitution” see [Rob99].

2

Figure 2.19 : To the left is the initial patch associated with a selected embedded word from the
fixed point of an iterated substitution. By iteration of this symmetrical start (ignoring the tile
colourings) a particularly attractive demonstration of the substitutions structure is derived in
much the same way as was done with the Fibonacci word in this chapter.

I originally set out in this chapter to explore a two dimensional drawing rule.
However, the concept of a drawing rule is in itself so interesting that I started
thinking about what the simplest possible drawing rule would be, even if it did
not yield a two dimensional path. The to and fro drawing rule evolved to be
amongst the most simple, and yet proved able to capture some of the symmetries
of the Fibonacci word. The deviations from zero diagrams came about in
response to discoveries made. I originally hit upon the idea of shading the area
between the path and the artificialy-axis by accident but it was seized upon
because of the strong visual impact of the result. The established practice is to
put the control points at an end of a tile. I opted to placing it in the middle and
then bent theB tile in half around it out of a desire to make more obvious, and
then capture, the symmetry of the deviations from zero.
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Chapter 3

Fractal In Nature

3.1  Overview
Previously we saw that the to and fro drawing rule on the Fibonacci word is a
one-dimensional traversing, back and forth, along the lineR. In this chapter we
continue to explore the nature of the Fibonacci word. A new drawing rule is
applied that gives a two dimensional path across R  It turns out to be a fractal. 2.

3.2  Similarity Fractals
Benoit Mandelbrot's seminal work from 1982, “The Fractal Geometry of
Nature”, contains the example of the mathematically idealised fractal
reproduced below in figure 3.1[Man82, page 50]. Such fractals are created from
two geometric objects that Mandelbrot terms aninitiator and agenerator. In
figure 3.1 the initiator is the straight line segment, A1, of unit length. The
generator is the A2 zigzag. The A2 generator is composed of eight line segments
each of length 0.25 units where the long double length segment is considered to
be two singles. Each of these eight line segments can now be viewed as an
initiator, each a quarter the length of the original initiator, A1. The generator,
scaled to fit, is applied to each and the result is A3. Repeating the process, this
time with a scaling factor of 0.25 yields A4. As the number of iterations tends
to infinity, the fractal is the “curve” that results. The key idea is to have a
generator that is constructed only from scaled and rotated copies of an initiator.

2

A1 A2 A3 A4

Figure 3.1 : Geometric iteration giving rise to a fractal.

In general, a set made up of m copies of itself scaled by length scale factor r has 

  dimSYM = − 
 log m 
 log r 

. a similarity dimension given by,  For the figure 3.1 fractal

this gives a value of 1.5 for the similarity dimension.
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3.3  The Double Letter Drawing Rule
The introductory example was selected because of its passing resemblance to a
meandering path. In striving to obtain a path of this nature from the Fibonacci
word it would seem likely that, in addition to moving onward, turns to both the
left and to the right will increase the likelihood of obtaining a path that does not
overwrite itself excessively. The Fibonacci word's language contains three
words of length two letters and this suggests a drawing rule such as that shown
in table 3.1 where each possible two letter combination is assigned a different
drawing instruction. Each instruction is assigned an overall length of 1 unit.

   Symbol Action

ab forward 0.5, turn right 90°, forward 0.5                          

aa forward 1

ba forward 0.5, turn left 90°, forward 0.5

Table 3.1 : The double letter drawing rule. 

The double letter drawing rule is only valid for Fibonacci words with an even
number of letters. This is so the letters can be bracketed in pairs without a letter
remaining unpartnered. This requirement causes the focus to fall upon words of
the form  with n ≡ 1 (mod 3). As examples satisfying these constraints let's
consider  = abaababa and = abaababaabaababaababaabaababaaba.

F n
F 4 F 7 

These bracket in letter pairs as,

F 4 = (ab) (aa) (ba) (ba)
and

    F 7 = (ab) (aa) (ba) (ba) (ab) (aa) (ba) (ba) (ab) (ab) (aa) (ba) (ab) (ab) (aa) (ba) (ab)
from which figure 3.2 is derived by applying the double letter drawing rule.

ba

Start↓
ab

aa

ba Finish↓

ba

Start↓
ab

aa

ba

Finish ↓

ab

aa

ba ba

ab ab

aa

ba ab

abaa
ba

ab
Figure 3.2 : Left   : The tiling path for  under the double letter drawing rule.F 4

      Right : The tiling path for  under the double letter drawing rule.F 7

In both cases the path with the last tile removed has rotational symmetry about the point marked
with a red cross. With that last tile removed, direction is preserved in the sense that the entrance
movement is downward as is the exit movement.
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Of course, from Lemma 2.1, we know that removing the last pair of letters from
 leaves a palindromic word, . For the two above examples this gives,F n W n

W 4 = (ab) (aa) (ba)
and

   W 7 = (ab) (aa) (ba) (ba) (ab) (aa) (ba) (ba) (ab) (ab) (aa) (ba) (ab) (ab) (aa) (ba)
where the middle section of each word is highlighted in red. In fact there can be
no middle section other than these two possibilities because of the illegality of
bb and the requirement that  be palindromic. Before moving on from figure
3.2 there are a couple of observations to extract. Firstly, notice that the last tile
of each of the two paths is greyed out and in both cases the coloured path that
remains has half turn rotational symmetry about the point marked with a red
cross. This red cross corresponds to either the tile associated with ...(aa)... or the
tiles associated with ...(ba)(ab)... at the middle of . Secondly, notice that the
direction along a tile is reversed in its image under the half turn rotational
symmetry. To further explore and explain this symmetry, table 3.2 shows all
possible orientations of the tiles drawn by the drawing rule along with the image
of each under a half turn rotation with the direction “flipped”. This flip is to
keep the direction along the tiled path correct. This direction element cannot be
ignored as the tile for a right turn (ab), if passed through the “wrong way” would
be seen as a left turn (ba), for example. Fundamentally, the fact that a word is
read from left to right needs to be preserved in the tiling path that it gives rise to.

W n

W n

ab↓

↓
↓

↓

ba ab

baba↓

↓

↓

↓

ab

↓

↓

↓

↓

ab ↓

↓

↓
↓

ba

aa

↓ ↓

aa

↓ ↓

↓

↓
↓

↓

aa

aa

aa↓ ↓

aa↓ ↓

↓

↓
↓

↓

aa

aa

Table 3.2 : All possible orientations of tiles by the double letter drawing rule. A tile selected
from the upper row of the table has image under a half turn rotation given directly underneath,
(and vice versa). Once rotated, a tile has the direction of the path through it reversed.

In table 3.2 it is noted that in all cases, when the direction is also considered,
(ab) has image (ba), (aa) is its own image, and (ba) has image (ab). The same
matching is evident in  and  due to the palindromic nature of these
words. Figure 3.3 demonstrates this;

W 4 W 7

W 7 = (ab) (aa) (ba) (ba) (ab) (aa) (ba) (ba) (ab) (ab) (aa) (ba) (ab) (ab) (aa) (ba)

W 4 = (ab) (aa) (ba)

Figure 3.3 : Matching of (ab) with (ba), of (aa) with itself, and of (ba) with (ab) in  and .W 4 W 7
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Lemma 3.1 : Half Turn Rotational Symmetry of  when n ≡ 1 (mod 3)W n

For n ≡ 1 (mod 3),  under the double letter drawing rule gives rise to a
path that has half turn rotational symmetry. Furthermore, the entrance
direction is the same as the exit direction.

W n

Proof
Case 1 : n ≡ 1 (mod 6).
The number of letters in  will be of the form 4k + 2 for some non-negative
integer valuek. With the last two (rightmost) letters removed what remains,

, is a palindrome (by Lemma 2.1) and of length 4k. As the subwordbb is not
legal, at the middle of this palindrome must be the letter configuration
...(ba)(ab)... which corresponds geometrically under the double letter drawing
rule to one of the tiling configurations shown in figure 3.3; 

F n 

W n

↓

ba

↓
ab

ab

ba

↓

↓

ab ba

↓↓

↓

ba

ab

↓
Figure 3.3 : The four possible orientations of the ...(ba)(ab)... tiles at the middle of the tiling
path associated with  with n ≡ 1 (mod 6).W n

Case 2 : n ≡ 4 (mod 6).
The number of letters in  will be of the form 4k for some non-negative
integer valuek. With the last two (rightmost) letters removed what remains,

, is a palindrome (by Lemma 2.1) and of length 4k 2. As the subwordbb is
not legal, at the middle of this palindrome must be the letter configuration
...(aa)... which corresponds geometrically under the double letter drawing rule to
one of the tiling configurations shown in figure 3.4;

F n 

W n −

aa

↓↓

aa

↓↓aa

↓

↓
aa

↓

↓

Figure 3.4 : The four possible orientations of the ...(aa)... tile at the middle of the tiling path
associated with  with n ≡ 4 (mod 6).W n

In figures 3.3 and 3.4 the arrows indicate the direction in which the tile is
traversed when it is considered as a piece of path. Notice that all of the possible
configurations in these figures have half turn rotational symmetry about the
centre marked with a red cross and also that all have an exit direction the same
as their entrance direction. Cases 1 and 2 now combine to give a basis for an
inductive proof. 

For the assumption step, we assume that there is some existing piece of tiled
path that has half turn rotational symmetry about its middle and with an entrance
and exit in the same direction. This is represented diagrammatically as shown in
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figure 3.5 and, without loss of generality, it will be assumed that the orientation
and the direction through the tiling path is as shown.

↓↓ ......
Figure 3.5 : The assumption step in diagrammatic form representing a piece of path. The green
half tile represents any of three possible tiles associated with (ab), (aa) or (ba). It is assumed that
this piece of path has half turn rotational symmetry about the red cross at the middle of the piece.
The orientation of this path and the entrance and exit directions are as shown, without loss of
generality. 

The piece of path in figure 3.5 will extend to the right in one of three possible
ways, either through the addition of the tile associated withab, or aa or ba.
From the palindromic nature of the Fibonacci words, these three possible
extensions to the right must match with extensions ofba, aa, or ab respectively
to the left. Diagrammatically, the three possibilities are shown in figure 3.6.

↓

↓ ......ba ab

aa
↓

↓

......
baab

aa

↓ ↓

......
Figure 3.6 : The inductive step, showing that all possible extensions of the path by one tile to the
right cause a tile to be added to the left that retains the half turn rotational symmetry about the
red cross and gives the entrance and exit directions that continue to be the same.

In all cases, after the inductive step, the tiling path continues to have half turn
rotational symmetry about the red cross and the entrance and exit directions
continue to be the same. The principle of induction can now be invoked to
complete the proof.             ̧

3.4  Is The Path A Fractal ?
By way of further illustrating Lemma 3.1, figure 3.7 on the next page shows
simplified paths (where the individual tiles are implied rather than shown
explicitly) for the two examples considered previously, and , alongside
the next two Fibonacci words for which then in  satisfiesn ≡ 1 (mod 3),
and . These images strengthen the suggestion that the drawing rule is giving
rise to a path that is fractal in nature. The aim of this chapter is to prove that this
is so. Several of the ideas used in this section are inspired by the 2009 paper
“The Fibonacci Word Fractal” by Alexis Monnerot-Dumaine[Mon09] where
they are applied to a different but related fractal. 

F 4 F 7

F n F 10

F 13
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Figure 3.7 : From left to right, the tiling paths associated with, ,  and  under the
double letter drawing rule. The paths start at the top of the diagram and finish at the bottom.
With the very last tile removed these paths represent   and 

F 4 F 7 F 10 F 13

W 4,W 7,W 10 W 13.
.

Theorem 3.1 is now stated; a crucial result underpinning our subsequent work.
.

Theorem 3.1 : The Fractal Structure of    (Monnerot-Dumaine [Mon09])W n
Fibonacci words, , with the last two letters removed are denoted and,
from Lemma 2.1, are palindromic,n ≥ 1. Let the two letters removed beuv
whereuv is one of the two possible endings; eitherab (with u = a andv = b
when n is odd) or ba (with u = b and v = a when n is even).

F n W n

Then, for n ≥ 6,

W n = W n − 3 (vu)W n − 3 (vu)W n − 6 (uv)  W n − 3 (uv)W n − 3

W n − 3

↓

↓

↓W n − 3

↓

W n − 6W n − 3

↓

↓

↓

↓

↓W n − 3

↓

(− 1)n − 1 90° (− 1)n − 1 90°

(− 1)n 90°(− 1)n 90°

In particular this is true whenn ≡ 1 (mod 3) corresponding to Fibonacci
words that are valid under the double letter drawing rule.
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Intuitively, a fractal is generally regarded as an endless, repeating, (or “almost”
repeating) pattern within which can be found echos of its parts at different
scales. Indeed, the whole maybe found within itself at a reduced scale. Theorem
3.1 shows that the Fibonacci word under the double letter drawing rule is giving
rise to an entity of this nature. The proof of Theorem 3.1 will require that a few
lemmas be established first and these will be presented shortly. First, however,
figure 3.8 provides an illustrative example for Theorem 3.1 where the tiled path
associated with  is shown broken down into its component parts as given by

= 
W 10

W 10 W 7 (ab) W 7 (ab)W 4 (ba)W 7 (ba) W 7.

↓

ba

Finish

Start↓

abab

ba

Figure 3.8 : Illustrating Theorem 3.1 for = . W 10 W 7 (ab)W 7 (ab)W 4 (ba)  W 7 (ba)W 7

Lemma 3.2 : End Letter Pair Reversal Rule   (Monnerot-Dumaine [Mon09])
Let  =  whereu andv represent the penultimate and last letters
respectively of  Let =  where the two end letters have
swapped places. Then,

F n W n (uv)
F n. T n W n (vu)

T n + 1 = F n T n − 1

Proof
The Fibonacci words, by definition, have the relationship,

F n + 1 = F n F n − 1    0 F 1 for  n ≥ 1,  F = a,  = ab

 W n + 1 (vu) = F n W n − 1 (vu)  F n + 1, F n − 1 have the same two letter ending

W n + 1 (uv) = F n W n − 1 (uv)  reverse the two letter ending on both sides

T n + 1 = F n T n − 1             ¸
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Lemma 3.3 : “Almost” Commutativity       (Monnerot-Dumaine [Mon09])
Let  =  whereu andv represent the penultimate and last letters
respectively of  Let =  where the two end letters have
swapped places. Then,

F n W n (uv)
F n. T n W n (vu)

F n = F n − 2 T n − 1 T n = F n − 2 F n − 1   and   

Proof
From =  note that, for example, = because  the
two letter endings of the Fibonacci words alternate betweenab and ba. From

= note that, for example, =  for the same reason.

F n W n (uv) F n + 1 W n + 1 (vu)  

T n W n (vu)  T n + 1 W n + 1 (uv)
From the definition of the Fibonacci substitution acting repeatedly on = a,
we have that  for 1 ≤ n ≤ 4  are as follows along with the corresponding ,

F 0

F n T n

•  = ab,  = baF 1 T 1 
•  = aba,  = aabF 2 T 2 
•  = abaab,   = ababaF 3 T 3

•   = abaababa,   = abaabaab  F 4 T 4

By way of establishing a basis for a proof by induction consider the casen = 3.
Then,  =  =  which matches the lemma's first
claim, and also  =  =  =  which matches the
second.

F 3 − 2 T 3 − 1 = F 1 T 2 (ab) (aab) F 3

F 3 − 2 F 3 − 1 F 1 F 2 (ab) (aba) T 3

It is now assumed the result is true for n = k for some k ∈ Z, k ≥ 4.

  F k = F k − 2 T k − 1 T k = F k − 2 F k − 1 In other words,    and   by assumption.

For the inductive step, consider n = k + 1, in which case,

  F k + 1 = F k F k − 1   (By definition)

= F k − 1 F k − 2 F k − 1

= F k − 1 T k    (From the assumptive step)

which is the first result with n replaced with k + 1.
Also,

   F k − 1 F k = F k − 1 F k − 2 T k − 1  (From the assumptive step)

= F k T k − 1   (By definition)

= T k + 1    (By Lemma 3.1) 

which is the second result with n replaced with k + 1,
Induction now gives the required pair of results.             ̧

Lemma 3.3 is telling us that if we take the concatenation of two consecutive
Fibonacci words  with  (which is equal to ) and concatenate them
the other way round as  then the resulting word is very nearly
still . In fact, the lemma tells us that this resulting word isbut with the
last two letters exchanged. One way of remembering this is to think of two
consecutive Fibonacci words being “almost commutative”.

F n − 1 F n − 2 F n
 F n − 2 F n − 1with 

F n F n 

The preparations are now done, and we are all set to prove Theorem 3.1.
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Theorem 3.1 : The Fractal Structure of    (Monnerot-Dumaine [Mon09])W n
Fibonacci words, , with the last two letters removed are denoted and,
from Lemma 2.1, are palindromic,n ≥ 1. Let the two letters removed beuv
whereuv is one of the two possible endings; eitherab (with u = a andv = b
when n is odd) or ba (with u = b and v = a when n is even).

F n W n

Then, for n ≥ 6,

W n = W n − 3 (vu)W n − 3 (vu)W n − 6 (uv)  W n − 3 (uv)W n − 3

W n − 3

↓

↓

↓W n − 3

↓

W n − 6W n − 3

↓

↓

↓

↓

↓W n − 3

↓
(− 1)n − 1 90° (− 1)n − 1 90°

(− 1)n 90°(− 1)n 90°

In particular this is true whenn ≡ 1 (mod 3) corresponding to Fibonacci
words that are valid under the double letter drawing rule.

Proof

F n = F n − 1 F n − 2     (By definition)

= F n − 2 F n − 3 F n − 3 F n − 4

= F n − 3 F n − 4 F n − 4 F n − 5 F n − 3 F n − 4

= F n − 3 F n − 4 F n − 5 F n − 6 F n − 5 F n − 4 F n − 5 F n − 4

= F n − 3 F n − 3 F n − 6 T n − 3 T n − 3 (By Lemma 3.3)

= W n − 3 (vu)  W n − 3 (vu)  F n − 6 W n − 3 (uv)  W n − 3 (uv)

  W n = W n − 3 (vu)  W n − 3 (vu)W n − 6 (uv)  W n − 3 (uv)  W n − 3  ¸Thus,

3.5  A Vector Relationship Between Tiling Paths
Theorem 3.1 proves that the double letter drawing rule has given rise to a fractal.
It is also the key to exploring other aspects of the meandering path. One striking
feature of figure 3.7 is that the exit of the tiling path associated with and

 is directly vertically below the entrance. Figure 3.9 and figure 3.10 extend
the sequence of fractals presented in figure 3.7 and show that is the next
word with a tiling path that has this property.

W 7

W 13

W 19
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Figure 3.9 : The tiling path associated with  under the double letter drawing rule. The path
starts top and finishes bottom.  has the same path but with the very last tile removed.

F 16

W 16

Let  be the vector with its tail at the start of the tiling path for  and its

head at the finish. Table 3.3 gives  for some values of n.

W n
→

W n

W n
→

W n N° tiles W n
→

W n N° tiles W n
→

W 4 3 ( )− 2
− 1 W 13 304 ( )0

− 40

W 7 16 ( )0
− 6 W 16 1291 ( )− 70

− 69

W 10 71 ( )− 12
− 11

W 19 5472 ( )0
− 238

 Table 3.3 : Observed values of  from careful counting on figures 3.7, 3.9 and 3.10.W n
→

Two previous vectors can be used to determine a subsequent vector in table 3.3
by making use of Theorem 3.1 and taking care over how the 90° turns flip the
vector. For example, for n ≡ 1 (mod 6),  is obtained from  and  by,W 13 W 10 W 7

 W 13

 →
= ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )− 12

− 11

1
2

− 12

11
− 12

1
2
1
2

0
6

1
2
1
2

11
− 12

1
2

− 12

− 12
− 11

= ( )0
− 40
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Figure 3.10 : The tiling path associated with  under the double letter drawing rule. The path
starts at the top of the diagram and finishes at the bottom. A bounding rectangle has been fitted
around the fractal with a vertical diagonal showing that the entrance is directly above the exit of
the tiling path. With the very last tile removed this is also the tiling path for 

F 19

W 19.
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As a further example, for n ≡ 4 (mod 6),  is obtained from  and  by,W 10 W 7 W 4

 W 10

 →
= ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )0

− 6

− 12
− 12

− 6
0

− 12
1
2

2
1

− 12
1
2

− 6
0

− 12
− 12

0
− 6

= ( )− 12
− 11

Lemma 3.4 provides general formulae for such calculations.

Lemma 3.4 : Iterative Formulae for W n
→

Let =  and =  wherep, q, r ands are integer constants

andn ≡ 1 (mod 3) such than the vectors represent displacements between the
entrance and exit of the associated tiling paths under the double letter
drawing rule on the Fibonacci word. Then,

 W n − 3

  →
 ( )p

q
 W n − 6

  →
 ( )r

s

W n

→
=














 
( )   
2p − 2q − r + 2

2p + 2q − s
for n ≡ 1 (mod 6)

( )   
2p + 2q − r − 2

− 2p + 2q − s
for n ≡ 4 (mod 6)

Proof
From Theorem 3.1, taking care over the orientation of the vectors implied by the

90° turns, and with  and  as defined above,W n − 3

  →
W n − 6

  →

Case 1 : For n ≡ 1 (mod 6),

 W n

→
= ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )p

q

1
2

− 12

− q
p

1
2
1
2

− r
− s

1
2
1
2

− q
p

1
2

− 12

p
q

= ( )   
2p − 2q − r + 2

2p + 2q − s
as claimed.

Case 2 :  For n ≡ 4 (mod 6),

 W n

→
= ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )p

q

− 12
− 12

q
− p

− 12
1
2

− r
− s

− 12
1
2

q
− p

− 12
− 12

p
q

= ( )   
2p + 2q − r − 2

− 2p + 2q − s
as claimed.

            ̧
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Previously, in table 3.3, there appeared to be an alternation between vectors of

the form  =  whenn ≡ 1 (mod 6) and = whenn ≡ 4 (mod 6).

Our next result, Lemma 3.5, shows that this alternation remains a feature asn
tends towards infinity.

W n
→ ( )0

w
W n
→

 ( )  x
x + 1

Lemma 3.5 : Alternating Nature of W n
→

For all n ≡ 1 (mod 3) the vector is of the form  whenn ≡ 1 (mod 6)

and of the form whenn ≡ 4 (mod 6). In other words alternates

between these two forms repeatedly as n tends to infinity.

W n
→

 ( )0
w

( )  x
x + 1

W n
→

 

Proof
Case 1 : For n ≡ 1 (mod 6),

 is of the form  and  is of the form .W n − 3

  → ( )x
x + 1

W n − 6

  → ( )0
w

   W n

→
= ( )  From Lemma 3.4,

2p − 2q − r + 2
2p + 2q − s

with p = x, q = x + 1, r = 0, s = w

        W n

→
= ( )0

4x + 2 − w

This is of the required form  where w′ = 4x + 2  w.( )0
w′

−

Case 2 : For n ≡ 4 (mod 6),

 is of the form  and  is of the form .W n − 3

  → ( )0
w
W n − 6

  → ( )x
x + 1

   W n

→
= ( )  From Lemma 3.4,

2p + 2q − r − 2
− 2p + 2q − s

with p = 0, q = w, r = x, s = x + 1

        W n

→
= ( )(2w − x − 2)

(2w − x − 2) + 1

This is of the required form  where x′ = 2w  x  2.( )x′
x′ + 1

− −

Given that is of the form  with x =  2 followed by being of the

form  with w =  6, we have an initial alternating basis to which an inductive

argument is then applied.

W 4

→
 ( )x

x + 1
− W 7

→
 

( )0
w

−

Alternate use of the case 1 and case 2 results, as appropriate, proves that, asn

tends to infinity, the claimed alternation of  between the two forms of vector
continues to hold.             ̧

W n
→
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3.6  Determining Fractal Dimension
An important measure attached to a fractal is its dimension. There are several
different measures of dimension in common usage and there is a skill in
selecting which is most appropriate for a given fractal. When dealing with
relatively uncomplicated fractals which have component parts (for example, line
segments) that do not excessively overlap, the generic term “fractal dimension”
is sometimes used, especially if the different measures of dimension give the
same numerical result. For our fractal the dimension can be determined using a
modified version of the formula previously given in section 3.2;

   dimSYM =
 log m 
 log s 

    (  s
 1 
 r 

 ) .where  is for the r of the earlier formula

In this,m is the ratio between and  (in the limit) at which the number of
line segments is increasing ands is the expansive length scale factor (in the
limit) at which (for example) the corresponding diagonal of a rectangular box
that is bounding the fractal is increasing. This rectangular bounding box
becomes more intuitively obvious as the number of iterations increases and is
shown explicitly in figure 3.10 as an orange outline along with the diagonal

corresponding to . For our fractal, the similarity dimension will have the
same value as that obtained from more sophisticated measures. In Kenneth
Falconer's,Fractal Geometry, [Fal03], for example, box dimension,dimB, and
Hausdorff dimension,dimH, will take on the same value. Indeed, for the example
presented earlier in figure 3.1, dimB = dimH = dimSYM = 1.5.

F n − 3 F n

W 13

 →

Proposition 3.1 : Value of m
For the fractal associated with the double letter drawing rule, in the limit, the

      dimSYM 
 log m 
 log s 

φ3,   φ 
 1 +  5  

 2 
   value  of  m  in =   is   where = and  m is the

limiting ratio at which the number of line segments between and
is increasing.

F n − 3 F n

Proof
The number of letters in the Fibonacci word (see table 1.1) is given by the
Fibonacci number  which, by definition, is given by,

F n 
 f (n)

f (n) = f (n − 1) + f (n − 2)  n ≥ 2   f (0) = 1,  f (1) = 2for with

    
  f (n)  

 f (n − 1)  
=

 f (n − 1) + f (n − 2)  
 f (n − 1)  

= 1 +
  f (n − 2)  
 f (n − 1)  

  In consequence,

  lim
n → ∞

 
  f (n)  

 f (n − 1)  
= lim

n → ∞
 1 + lim

n → ∞
 
  f (n − 2)  
 f (n − 1)  

.Taking limits,  

x = lim
n → ∞

 
  f (n)  

 f (n − 1)  
    x = 1 +

 1 
 x 

Let  in which case the above becomes .  

  x φ =
 1 +  5  

 2 
. Solving gives the expansive value of sought. It is,  

  ,  m = lim
n → ∞

 
  f (n)  

 f (n − 3)  
= φ3.         ¸ Hence
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Note that, in Proposition 3.1 it does not matter that it is pairs of letters that give
rise to the number of line segments because it is a ratio that is being found. Also
note that, because we are taking limits asn tends to infinity, we can be relaxed
about the one tile (two letter) difference between  and .F n W n

Proposition 3.2 : Value of s
For the fractal associated with the double letter drawing rule, in the limit, the

       dimSYM 
 log m 
 log s 

    1 +  2   value  of s in = is where s is the expansive length

scale factor in the limit between  and  .W n − 3

  →
 W n

→

Proof

      Consider the two consecutive vectors   =  and W n − 6

  → ( )   x
x + 1

 = W n − 3

  → ( )0
w

 in

    W n

→
= ( )   .which case

(2w − x − 2)
(2w − x − 2) + 1

by Lemma 3.4

As we are dealing with an expansive iterative process, as the number of

iterations increases,w and x become large with →

.    The lengths of these three vectors are tending towards the

W n − 6

  → ( )  x
x

 and

 W n
→

→ ( )2w − x
2w − x

  | W n − 6

  →
 | →  2  x,  |  | → w  | W n

→
 | →  2  (2w − x) .following; W n − 3

  →
and 

In the limit, the expansive length scale factor is given by,

  
 w 

  2  x 
=

  2  (2w − x)  
 w 

       w2 − 4wx + 2 x2 = 0.from which,

    w =  2  x (  2 ± 1) .Solving this quadratic equation gives,

  s =
 w 

  2  x 
= 1 +  2      ¸For an expansive value, it follows that,  

The chapter now concludes with the important result presented as Theorem 3.2;

Theorem 3.2 : Value of Hausdorff Dimension
The  Hausdorff  dimension  of  the  fractal  associated  with  the  double  letter

     dimH =
 log φ3 

 log (1 +  2 )  
= 1.6379drawing rule is  

Proof
Using the values of m and s from Propositions 3.1 and 3.2 respectively,

dimH = dimSYM =
 log m 
 log s 

=
 log φ3 

 log (1 +  2 )  
= 1.6379 ¸= 
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3.7  Author's Notes on Chapter 3
The fractal known in the literature as “The Fibonacci Word Fractal”[Wik21b]
arises from what is termed “the odd-even drawing rule” directly applied to the
Fibonacci word, assigning one instruction to one letter. The instructions to draw
the fractal tell the drawing pen to, starting before the first letter of ,F

• take the  next letter and draw a unit line segment forward

• if the letter is an a then,

• turn 90° left if the a is in an even position within F
• turn 90° right if the a is in an odd position within F

• repeat the process indefinitely
Figure 3.11 gives an example of the path produced.

Figure 3.11 : The meandering path produced by the odd-even drawing rule applied to the
Fibonacci word, . The path starts at the top of the diagram and finishes at the bottom.F 12

The odd-even drawing rule is not an obvious drawing rule to apply because of
the need to know for each lettera if it is in an odd or even numbered location.
The advantage of the rule, however, is that it draws a fractal that is more straight
forward to  analyse. To me, taking the letters in pairs seemed more natural. I was
curious to know if the “alternative” fractal obtained was amenable to a relatively
straight forward mathematical analysis; it was a relief to find a way of
determining the Hausdorff dimension! In some respects the two fractals are
different. For example, the odd-even fractal has a limiting ratio of width : height
of 1 : whereas the double letter fractal's ratio is 1 : 1 + (The interested
reader may like to confirm that result). And yet they have exactly the same value
for their Hausdorff dimension.

 2   2 
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Chapter 4

Future Directions

4.1  Generalised To and Fro
Inevitably, in a work of less than 12,000 words, we have but sampled some
flavoursome fruit from the low hanging branches of a vast tree. The ideas from
chapter 2 have obvious extensions into two dimensions even without opting for
a completely different drawing rule like that of chapter 3. Table 4.1 gives a
generalised to and fro drawing rule. Withϕ = 180° it is as before but other
values ofϕ are waiting to be explored. For example, withϕ = 108° the attractive
motif shown left in figure 4.1 is obtained form . Increasing then in  to 18
gives a massive amount of overwriting but reveals the path shown on the right of
the same figure with a steady overall bend. Increasingn further will cause it to
eventually circle back on itself but is an annulus the eventual form? Chasing this
idea a little further, figure 4.2 shows a similar circular path whenϕ = 136° for

 (left) and  (right). Computer explorations suggest there may be a special
“fire hose” angle aroundϕ = 137.4° that projects the path forward overall. The
name arises because finding this critical angle is akin to holding onto the tap end
of a hosepipe. The hose is trying to snake up and down and wants to swing back
on itself spraying water from its free end in all directions but forward. Finding
such “fire hose” angles (if they exists) using mathematics may prove interesting.

F 12 F n

F 13 F 18

Symbol Action

a forward φ                                                          

b forward 0.5, turn ϕ°, forward 0.5

Table 4.1 : The generalised to and fro drawing rule making use of an angle ϕ instead of 180°.

Figure 4.1 : Left  : The tiling path when the ϕ = 108° drawing rule is applied to F 12.
     Right : This path has an overall bend as the n in is increased. F n 
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Figure 4.2 : Left    : The tiling path when the ϕ = 136° drawing rule is applied to F 13.
     Right : The same rule applied to .F 18

Figure 4.3 : Using a computer to explore the possibility that there is a value ofϕ in the
generalised to and fro style drawing rule that, overall, projects the tiling path in a straight
direction. Here the word  is suggesting that the angle sought is greater thanϕ = 137.0°
(upper diagram) and also greater thanϕ = 137.2° (middle diagram) both of which gives a tiling
path that seems to overall have an anticlockwise bend, whereasϕ = 137.4° gives an almost
straight overall projection of the path (lower diagram). A striking feature of the path is that it
seems to be composed from two motifs thus giving a visualisation of a factorisation of    

F 12

F .
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4.2  Self Avoiding Walks
In the Monnerot-Dumaine paper[Mon09], proving that the Fibonacci fractal
does not intersect itself is identified as an open problem. There is a substantial
body of work on self avoiding walks which may provide some pointers. By way
of an initial look at this problem, Figure 4.4 shows a fractal with a straight line
segment as initiator, A1, of 1 unit length. The generator is the A2 dogleg. The
substitution, Ω, underpinning the iterative generation of this fractal is;

Ω :







F → F L F R F R F L F
L → L
R → R

and the iterative fixed point of interest is  as n → ∞ . Ωn (F)
The drawing rule is as given in table 4.2.

A1 A2 A3 A4

Figure 4.4 : An example of a self intersecting fractal.

Symbol Action

F forward 1                                                          

L turn left (clockwise) 90°

R turn right (anticlockwise) 90°

Table 4.2 : The drawing rule that acts on the substitution  to give the fractal of figure 4.4.Ω∞ (F)

The infinite word  begins F L F R F R F L F L F L F R F R F L F R ... butΩ∞ (F)
the embedded word highlighted in red is a loop that self intersects. This proves
that this fractal is not a self avoiding walk. In general, determining if an infinite
walk is self avoiding is difficult but, possibly, the almost periodic nature of the
Fibonacci word means this is a problem that can be resolved in this special case.
It would be interesting to work on this.
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4.3  Letter Frequency Analysis
Tied in with the problem of determining if the double letter fractal is a self
avoiding walk or not, would seem to be the issue of analysing the frequency
with which the three letter pairsab, aa and ba occur. Without going into the
detail, it turns out thatab andba have a relative frequency of about 38% withaa
claiming the remaining 24%. However, it's not just these frequencies that are
important; as we read through from left to right, how much can the count of
one letter pair get ahead or behind the others? There would also seem to be merit
in looking into the possible factorisations ofand the frequencies of letters (or
double letters) within and between factors. Theorem 2.1 gave a proof that one
such factorisation exists; there are many others.

F

F

4.4  Periodic Approximations to the Aperiodic
Figure 4.5 shows a fractal with a straight line segment as initiator, A1, of 1 unit
length. The generator is the A2 meander. This was inspired by the tiling path
associated with  under the double letter drawing rule. This fractal can be
thought of as a periodic approximation to our aperiodic fractal from under the
double letter drawing rule. This approximation has 17 segments and a scaling
factor of one seventh giving a fractal dimension of 1.46. A sequence of such
approximating  a fractals based on ,  would seem to provide
ever better periodic approximations. For example, has 1762289 segments
and a scaling factor of  giving a fractal dimension of 1.60, which is
getting closer to the 1.64 of the double letter fractal Are there situations where it
would be easier to work with these periodic approximations rather than the
aperiodic real fractal ?  

F 7

F

F 13 F 19, F 25 , ...
F 31

8119− 1

.

A1 A2 A3 A4

Figure 4.5 : With a straight line initiator, using an inspired generator to obtain a periodic fractal toF 7 
approximate the aperiodic fractal obtained for the Fibonacci word, under the double letter drawing F ,
rule. This approximation has fractal dimension 1.46 rather than the 1.64 of  but increasingly betterF
approximations are obtained by using as inspiration     ... F 13, F 19, F 25, F 31,
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4.5  Author's Notes on Chapter 4
A major part of the attraction of working with the Fibonacci word is the
abundance of patterns giving mathematical footholds and suggesting possible
avenues to explore. In the established literature the Fibonacci substitution and
the resulting word has been generalised in several different ways and it would
certainly be interesting to extend this work to embrace them. Another possible
future project would be to add an exercise to the end of each chapter by way of
expanding and exploring further the content  therein.
In researching this topic I became very aware that there is a large body of
mathematics, far more sophisticated than that covered here, that analyses the
Fibonacci word in ever more subtle ways, and from an ever more general
viewpoint. However, the  desire to take this work in that direction has been
tempered for now by the fact that the dissertation deadline is upon me; it is time
to stop!
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Appendix A1 :
Remembering Professor Uwe Grimm


It wasUwe who introducedme to thatmost fascinatingof
mathematical toys, the infinite Fibonacci word. It's a
deceptivelysimple substitution,θ, on an alphabetof only
two letters,A{a,b}, definedby a → ab andb → a. It gives
us the finite Fibonacciwords, = . The first few
are; = a, = ab, = aba, = abaab and so on.
Throw away the last coupleof letterson any given word
andwhat'sleft is a palindrome.As example = abaababa
which, without its rightmost two letters, is abaaba. This
palindromic nature along with the remarkable
concatenationproperty that = for n ≥ 3,
guarantees that the Fibonacci words abound with
symmetries.As n → ∞ the infinite Fibonacciword emerges
as a fixed point of the iteration.

F n θn (a)
F 0 F 1 F2 F 3 

F4 

Fn Fn − 1 Fn − 2

Uwe took pleasurein finding geometricvisualisationsto
complementhis algebraic researches.These were often
stunningly beautiful creations that non-mathematicians
couldmarvelover.Whenhedied,I hadjustbegunstudying
the Open University's M840 graduatecourse,Aperiodic
Tilings andSymbolicDynamics.In thecoursetopic guide,
(co-authoredwith ReemYassawi),he showedhow, via the
Fibonacci word's substitution incidence matrix, the left
eigenvector gave rise to an aperiodic tiling of .R+

F 1

F 2

F 3

F 4

F 5

For my dissertationI endedup running with this idea,
underthewatchful eyeof Dan Rustwho kindly steppedin
to superviseUwe'sorphanedstudentsand keepthe course
going.I took Uwe'stiled pathandtwistedit backandforth,
oftenwith it tiling overitself, andlooked at the properties
of theresultingfigures.Thetwisting wasvia a drawingrule
that took eachletter of theFidonacciword in turn andused
it as an instruction to say how the next tile should be
placed.Someattractiveimagesresulted.To give a flavour
of what canoccur the adjacentimageis for underthe
following drawing rule,

F22 

Symbol Action

a forward φ   (The golden ratio, about 1.618)

b forward 0.5, turn 108°, forward 0.5

I like to thing thatmy visualisationof is in thespirit of
the mathematicsthat inspired it; Uwe's mathematics.And
that he would approve. 

F22 

Martin Hansen, June 2022
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“Remembering Professor Uwe Grimm” was produced as a poster forThe
Aperiodic, a conference organised in memory of Uwe Grimm at The Open
University in Milton Keynes in June 2022.
It was subsequently published in the December 2022 edition of M500, the
mathematics magazine of The Open University.
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Appendix A2 : Programs
A2.1  To and Fro Drawings : Samples of Simplified Logo Program Code

to Fib01right : Program name, this will draw  = abF 1

forward 1.618 : Length of tile A, the golden ratio to three decimal places
forward 0.5 : First half length of tile B
right 90
forward 0.4 : To make an artificial step downward at the centre of tile B
right 90
forward 0.5 : Second half length of tile B
end

to Fib01left : Similar to Fib01right with right 90 replaced with left 90
: Whether moving to the right or the left the line needs to
: zigzag downwards

to Fib02right : Program name, this will draw  = abaF 2

Fib01right : Call program titled Fib01right
forward 1.618 : The extra tile A on the end of  having just drawn F 2 F 1

end

to Fib02left : The moving left version of Fib02right

to Fib03right : Drawing  using the relationship  = F 3 F 3 F 2 F 1

Fib02right : Call program titled Fib02right
Fib01left : Call program titled Fib01left
end

to Fib03left : Similar to Fib03right with Fib02right replaced with Fib02left
:   and with Fib01left replaced with Fib01right

Figure A2.1 : A LOGO programming language interpreter written to allow short 
“turtle graphics” programs to be written that implement and explore various drawing rules.
Many of this dissertation's diagrams were drawn using this software.
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