4.1 The Merge of Trigonometry and Complex Numbers

Euler's Relation is important because it firmly links together the subjects of trigonometry and complex numbers in a fundamental way. This merging of two topics, each important in their own right, is further strengthened by a formula found by Abraham de Moivre in 1707,

De Moivre's Theorem

For any positive integer, *n*,

$$(r(\cos\theta + i\sin\theta))^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

The formula will also work with negative integers although not, as it stands, with fractional values of n. Here it will be proven for positive integers.

Proof (by induction)

Basis step:

For
$$n = 1$$
 LHS = $(r(\cos \theta + i \sin \theta))^1 = r(\cos \theta + i \sin \theta)$
RHS = $r^1(\cos(1\theta) + i \sin(1\theta)) = r(\cos \theta + i \sin \theta)$

As LHS = RHS, de Moivre's theorem is true for n = 1

Assumption step:

Assume that de Moivre's theorem is true for $n = k, k \in \mathbb{Z}^+$ in which case,

$$(r(\cos\theta + i\sin\theta))^k = r^k(\cos(k\theta) + i\sin(k\theta))$$

Inductive step:

When n = k + 1, the LHS of the theorem becomes,

$$(r(\cos\theta + i\sin\theta))^{k+1}$$

$$= (r(\cos\theta + i\sin\theta))^{k} (r(\cos\theta + i\sin\theta))^{1}$$

$$= r^{k} (\cos(k\theta) + i\sin(k\theta)) r(\cos\theta + i\sin\theta)$$

$$= r^{k+1} (\cos(k\theta)\cos\theta - \sin(k\theta)\sin\theta + i(\sin(k\theta)\cos\theta + \cos(k\theta)\sin\theta))$$

$$= r^{k+1} (\cos(k\theta + \theta) + i\sin(k\theta + \theta))$$

$$= r^{k+1} (\cos((k+1)\theta) + i\sin((k+1)\theta))$$

Conclusion step:

Thus, if the theorem is true for n = k, then it is true for n = k + 1

As the theorem is true for n = 1, it is true for all positive integers, by induction \square

which is the RHS of the theorem with n = k + 1

The video talks through the proof of de Moivre's theorem on the previous page

Abraham de Moivre (1667-1754)

A French mathematician known for de Moivre's theorem, a formula that links complex numbers and trigonometry, and for his statistics work with the normal distribution.

He wrote a book on probability theory, "The Doctrine of Chances", much prized by gamblers. He moved to England to escape religious persecution, there becoming a friend of Isaac Newton, Edmond Halley and James Sterling.

He was the first to postulate the Central Limit Theorem, a cornerstone of probability theory.

4.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40

Question 1

$$z = \sqrt{2} \left(\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right)$$

Find the exact value of z^5 , giving your answer in the form a + ib where $a, b \in \mathbb{R}$

[3 marks]

Question 2

$$w = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$

Find the exact value of w^4 , giving your answer in the form a + ib where $a, b \in \mathbb{R}$

[3 marks]

Question 3

$$v = \sqrt{3} \left(\cos \left(\frac{3\pi}{4} \right) - i \sin \left(\frac{3\pi}{4} \right) \right)$$

Find the exact value of v^6 , giving your answer in the form a + ib where $a, b \in \mathbb{R}$

$$z = -2 + \left(2\sqrt{3}\right)i$$

(i) Express z in the polar form $r(\cos \theta + i \sin \theta)$ where r and θ have values that you have determined.

[3 marks]

Using de Moivre's theorem,

(ii) show that z^6 is a real number, and state its numerical value

[2 marks]

Question 5

Express $(3 + \sqrt{3} i)^5$ in the form $a + b\sqrt{3} i$ where a and b are integers

De Moivre's theorem can be used to establish to following useful result,

Exponential Form, Powered

$$(re^{i\theta})^n = r^n e^{in\theta}$$

Prove this result without using any laws of indices, but using de Moivre's theorem

[4 marks]

Question 7

Using de Moivre's theorem or any of the laws of indices previously proven,

prove that
$$\frac{\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)^{6}}{\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^{11}} = \cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)$$

(i) Express $\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$ in the form $re^{i\theta}$, where r>0 and $-\pi<\theta\leq\pi$

[4 marks]

(ii) Hence find the smallest positive integer value of n for which

$$\left(\frac{1+\sqrt{3}\,\mathrm{i}}{1-\sqrt{3}\,\mathrm{i}}\right)^n$$

is real and positive

Determine, in as simple a form as possible, the value of

$$\frac{18(1-i)^{39}}{(1+i)^{41}}$$

[5 marks]