Chapter 3

Further A-Level Pure Mathematics Volumes of Revolution : Core 1

3.1 Spin About Y

The volume of revolution formed when x = f(y) is rotated through 2π radians about the y-axis between y = a and y = b is given by

$$Volume = \pi \int_{a}^{b} x^{2} \, dy$$

3.2.1 The Question

Find the exact volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the *y*-axis.

$$x = 3\sqrt{\sin(2y)}, \quad y = 0, \quad y = \frac{\pi}{4}$$

Give your answer as a multiple of π

You may like to try answering this question yourself before taking a look at the answer over the page.

NOTE : RADIANS must be used whenever trigonometry and calculus mix.

3.2.2 The Answer

 $Volume = \pi \int x^2 dy$ = $\pi \int_0^{\frac{\pi}{4}} 9 \sin(2y) dx$ = $\frac{9\pi}{2} \int_0^{\frac{\pi}{4}} 2 \sin(2y) dx$ Setting up a ""Chain "Rule "Backwards" = $\frac{9\pi}{2} \left[-\cos(2y) \right]_0^{\frac{\pi}{4}}$ = $\frac{9\pi}{2} \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0) \right]$ = $\frac{9\pi}{2} \left[-0 + 1 \right]$ = $\frac{9\pi}{2}$

3.3 A Handy Table is Trigonometric Derivatives & Integrals

f(x)	f'(x)
sin x	cos x
cos x	$-\sin x$
tan x	$sec^2 x$
sec x	sec x tan x
CSC X	$-\csc x \cot x$
cot x	$-\csc^2 x$
$ln \mid x \mid$	$\frac{1}{x}$
$ln \mid sec \mid x \mid$	tan x
$ln \mid sin \mid x \mid$	cot x
ln sec x + tan x	sec x
$ln \mid tan \left(\frac{1}{2}x + \frac{1}{4}\pi \right) \mid$	sec x
$-\ln \csc x + \cot x $	CSC X
$ln \mid tan\left(\frac{1}{2}x\right) \mid$	CSC X
<i>e x</i>	<i>e x</i>

* * * *

* * * * * *

* Formulae marked with an asterix are provided in the examination in a book of formulae.

3.4 Exercise

Question 1

(i) Show that the volume swept out by the curve $x = 6 e^{3y}$ between y = 0 and y = 2 when it is rotated by $2\pi^c$ about the y-axis is exactly $6\pi (e^{12} - 1)$

(**ii**) Give this volume as a decimal correct to three decimal places.

(i) Show that the volume swept out by the curve $x = \frac{3}{\cos(0.5y)}$ between $y = \frac{\pi}{3}$ and $y = \frac{\pi}{2}$ when it is rotated by $2\pi^c$ about the y-axis is exactly $6\pi(3 - \sqrt{3})$

(ii) Give this volume as a decimal correct to three decimal places.

The volume of revolution of a shot glass is 4π cm³ exactly. The profile curve is $x = \sqrt{y}$ and the rotation is about the *y*-axis. The lower limit of the profile curve is y = 1 cm. The upper limit is not known, call it *a* cm. Calculate the upper limit, *a*, of the profile curve. Clearly showing your method and working.

Question 4

Find the exact volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the *y*-axis.

$$x = y + \frac{1}{\sqrt{y}}, \qquad x = 1, \qquad x = 4$$

Write your answer in the form π (K+ ln 4) where K is a constant, the value of which you should determine.

(i) Use the product rule to differentiate with respect to *y*,

 $x = y \ln y$

(**ii**) Hence show that,

$$\int_{1}^{8} (1 + \ln y) \, dy = 24 \ln 2$$

(iii) Hence state the volume of the solid formed when the profile curve $x = \sqrt{1 + \ln y}$

is rotated 2π radians about the y-axis between y = 1 and y = 8

Show that the volume swept out by the curve

$$x = \frac{1}{4} e^{\frac{y}{2}}$$

between y = 0 and $y = 4 \ln 3$ when it is rotated by $2\pi^c$ about the y-axis is exactly 5π

Find the volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the *y*-axis.

$$x = \frac{1}{3}\sqrt{\sin\left(\frac{y}{2}\right)}, \qquad y = 0, \qquad y = \frac{\pi}{6}$$

Give your answer correct to 3 significant figures.

This document is Licensed for use by staff and students at **Shrewsbury School, England** To obtain a licence please visit www.NumberIsAll.com © 2020 Number Is All