A-Level Pure Mathematics: Year 2
 Applications of Trigonometry

5.1 Revision

> Any solution based entirely on graphical
> or numerical methods is not acceptable
> Marks Available : 40

Question 1

Convert the following angles, written in radians, into their degrees equivalent,
(i) $\frac{\pi}{2}$
(ii) $\frac{5 \pi}{6}$
(iii) $\frac{13 \pi}{12}$

Question 2

Convert the following angles, written in degrees, into their radian equivalent. Give exact answers in terms of π.
(i) 45°
(ii) 15°
(iii) 330°

Question 3

Solve the following equation over the interval $0 \leqslant \theta \leqslant 2 \pi$
Give exact answers in terms of π

$$
2 \cos \left(2 x+\frac{\pi}{8}\right)=\sqrt{2}
$$

Question 4

A-Level Examination question from June 2019, Paper 2, Q3

The diagram shows a sector $A O B$ of a circle with centre O, radius 5 cm and angle $A O B=40^{\circ}$.
The attempt of a student to find the area of the sector is shown below,

$$
\begin{aligned}
\text { Area of sector } & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 5^{2} \times 40 \\
& =500 \mathrm{~cm}^{2}
\end{aligned}
$$

(a) Explain the error made by this student.
(b) Write out a correct solution.

Question 5

(i) When θ is small and measured in radians, use the small angle approximations to show that,

$$
\frac{1-\cos 3 \theta}{\theta \tan 2 \theta} \approx \frac{9}{4}
$$

(ii) When $\theta=0.1^{\mathrm{c}}$ (about 6°) what is the percentage error introduced by using the small angle approximations ?

Question 6

A-Level Examination question from June 2018, Paper 2, Q7 (i)
Solve the equation,

$$
4 \sin x=\sec x \quad \text { for } \quad 0 \leqslant x<\frac{\pi}{2}
$$

Question 7

A-Level Official Mock Examination Question from 2019, Paper 1, Q2

The shape $A O C B A$, shown, consists of a sector $A O B$ of a circle centre O joined to a triangle $B O C$.

The points A, O and C lie on a straight line with $A O=7.5 \mathrm{~cm}$ and $O C=8.5 \mathrm{~cm}$.
The size of angle $A O B$ is 1.2 radians.

Find, in cm , the perimeter of $A O C B A$, giving your answer to one decimal place.

Question 8

A-Level Examination question from June 2010, C3, Q3
(a) Express $5 \cos x-3 \sin x$ in the form $R \cos (x+\alpha)$ where $R>0$ and $0<\alpha<\frac{1}{2} \pi$
(b) Hence, or otherwise, solve the equation

$$
5 \cos x-3 \sin x=4
$$

for $0 \leqslant x<2 \pi$, giving your answers to 2 decimal places.

