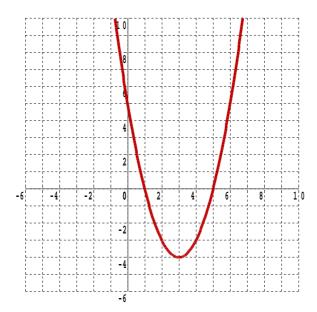

GCSE Differentiation I


6.1 Local Minimum & Local Maximum

Differentiation is used to find the optimal solutions to problems. On a graph, such 'best' solutions are often found where there is either a **local maximum** or a **local minimum**.

6.2 The Graphical Method

The graph below is of the equation $y = x^2 - 6x + 5$

By looking at the graph, write down the integer coordinates of the local minimum.

Ś

[1 mark]

As mathematicians, we don't want to have to go to the bother of plotting the graph to find this important point.

6.3 The Mathematical Method

Teaching Video : http://www.NumberWonder.co.uk/v9036/6.mp4

The teaching video will talk you through the following method of finding all local minima and local maxima of a function.

Finding Local Minima and Local Maxima

STEP 1 : Differentiate the **POINTS** equation to get its **GRADIENT** equation.STEP 2 : Set the **GRADIENT** equation equal to zero and solve.STEP 3 : Put the solution(s) from STEP 2 back into the **POINTS** equation.

Example

Find all local maxima and minima (if any) on the curve with equation;

 $y = x^2 - 6x + 5$

[3 marks]

6.4 Exercise

Marks Available : 50

Question 1

Find the coordinates of the local minimum point on the following quadratic curve;

 $y = x^2 - 8x + 9$

[3 marks]

Find the coordinates of the local maximum point on the following parabola,

 $y = 6x + 14 - x^2$

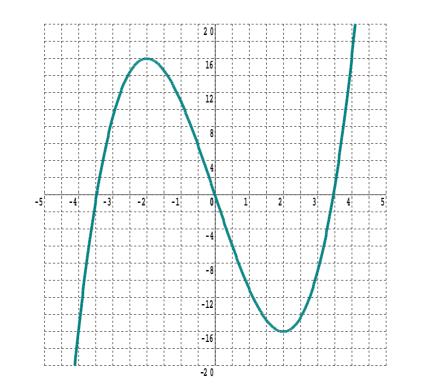
[3 marks]

Question 3

Find the coordinates of the local minimum point on the following parabola,

$$y = 2x^2 - 20x + 52$$

[3 marks]


Question 4

Find the coordinates of the local maximum point on the following parabola

 $y = 12x - 7 - 3x^2$

[3 marks]

Consider the equation, $y = x^3 - 12x$

(a) From looking at the curve, (i) write down the coordinates of the local maximum point.

[1 mark]

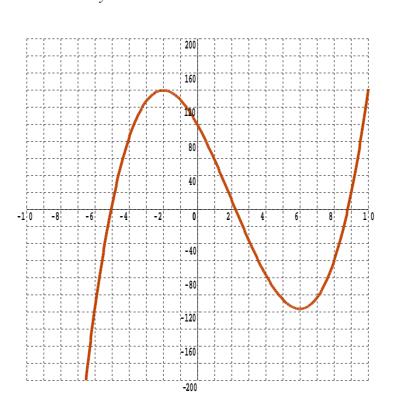
(ii) write down the coordinates of the local minimum point.

[1 mark]

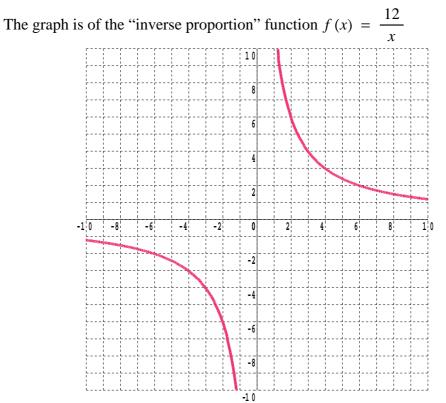
(**b**) Use the mathematical method to obtain the same answers.

Find the coordinates of any **local minimum** or **local maximum** point on;

(i)
$$y = x^3 - 27x$$


[4 marks]

(ii) y = (x + 7) (x + 1)


[4 marks]

(iii) $y = x^4 - 256x$

Use mathematics to find the local minimum and local maximum of the curve,

 $y = x^3 - 6x^2 - 36x + 100$

(i) Write down the gradient function, f'(x)

[2 marks]

(ii) Write down the bend detector function, f''(x)

[2 marks]

(iii) Use the appropriate function to find the point on this curve where x = 2

[2 marks]

(iv) Use the appropriate function to find the gradient of this curve when x = 2

[2 marks]

(v) Determine if the curve is bending anticlockwise or clockwise when x = 2

[2 marks]

The curve $y = x^3 + 12x$ has no turning points Show that this is the case by trying to find them via the mathematical method. What goes "wrong"?

[4 marks]

This document is Licensed for use by staff and students at **Shrewsbury School, England** To obtain a Licence please visit www.NumberIsAll.com © 2020 Number Is All