Lesson 6

6.1 Local Minimum \& Local Maximum

Differentiation is used to find the optimal solutions to problems.
On a graph, such 'best' solutions are often found where there is either a local maximum or a local minimum.

6.2 The Graphical Method

The graph below is of the equation $y=x^{2}-6 x+5$

By looking at the graph, write down the integer coordinates of the local minimum.
[19
[1 mark]
As mathematicians, we don't want to have to go to the bother of plotting the graph to find this important point.

6.3 The Mathematical Method

Teaching Video : http://www.NumberWonder.co.uk/v9036/6.mp4

The teaching video will talk you through the following method of finding all local minima and local maxima of a function.

Finding Local Minima and Local Maxima

STEP 1 : Differentiate the POINTS equation to get its GRADIENT equation.
STEP 2 : Set the GRADIENT equation equal to zero and solve.
STEP 3 : Put the solution(s) from STEP 2 back into the POINTS equation.

Example

Find all local maxima and minima (if any) on the curve with equation;

$$
y=x^{2}-6 x+5
$$

6.4 Exercise

$$
\text { Marks Available : } 50
$$

Question 1

Find the coordinates of the local minimum point on the following quadratic curve;

$$
y=x^{2}-8 x+9
$$

Question 2

Find the coordinates of the local maximum point on the following parabola,

$$
y=6 x+14-x^{2}
$$

Question 3

Find the coordinates of the local minimum point on the following parabola,

$$
y=2 x^{2}-20 x+52
$$

Question 4

Find the coordinates of the local maximum point on the following parabola

$$
y=12 x-7-3 x^{2}
$$

Question 5

Consider the equation, $y=x^{3}-12 x$

(a) From looking at the curve,
(i) write down the coordinates of the local maximum point.
[1 mark]
(ii) write down the coordinates of the local minimum point.
[1 mark]
(b) Use the mathematical method to obtain the same answers.

Question 6

Find the coordinates of any local minimum or local maximum point on;
(i) $y=x^{3}-27 x$
[4 marks]
(ii) $y=(x+7)(x+1)$
(iii) $y=x^{4}-256 x$

Question 7

Use mathematics to find the local minimum and local maximum of the curve,

$$
y=x^{3}-6 x^{2}-36 x+100
$$

Question 8

The graph is of the "inverse proportion" function $f(x)=\frac{12}{x}$

(i) Write down the gradient function, $f^{\prime}(x)$
(ii) Write down the bend detector function, $f^{\prime \prime}(x)$
[2 marks]
(iii) Use the appropriate function to find the point on this curve where $x=2$
(iv) Use the appropriate function to find the gradient of this curve when $x=2$
[2 marks]
(v) Determine if the curve is bending anticlockwise or clockwise when $x=2$

Question 9

The curve $y=x^{3}+12 x$ has no turning points
Show that this is the case by trying to find them via the mathematical method.
What goes "wrong"?
[4 marks]

