Trial Trail Revision \#3

IGCSE Mathematics
Trial Trail Revision Papers

Answer as many questions as you can You are expected to have a calculator available
 Marks Available : 40

Question 1

For his motorbike, Fergus buys x litres of petrol at 161 pence per litre.
He has to pay $£ 30.59$ in total for the petrol bought.
How many litres of petrol did Fergus buy?

Question 2

The diagram shows a cuboid and a cube.

The dimensions of the cuboid are $x \mathrm{~cm}$ by 6 cm by 3 cm
The volume of the cuboid is $45 \mathrm{~cm}^{3}$
The cube has sides of length $x \mathrm{~cm}$
Work out the volume of the cube.
Give your answer correct to one decimal place.

Question 3

The diagram shows two flags labelled \boldsymbol{A} and \boldsymbol{B}
(i) Translate flag \boldsymbol{A} by the vector $\binom{-4}{1}$

Label this new flag with the letter \boldsymbol{C}
(ii) Find a single transformation that moves flag \boldsymbol{A} to flag \boldsymbol{B}

Question 4

Solve these simultaneous equations;

$$
\begin{aligned}
& 5 x+6 y=9 \\
& 2 x+3 y=3
\end{aligned}
$$

Question 5

Expand the brackets and simplify,
(i)
$(3 x+5)(2 x-1)$
(ii) $(4 x+3)^{2}$

Question 6

Find the median of these five numbers;
43
28
37
30
12
[2 marks]

Question 7

Two similar shapes have an area scale factor between them of 25 .
What is the length scale factor between the two similar shapes?

[1 mark]

Question 8

Consider the functions, f and g, given by,

$$
\begin{aligned}
& f(x)=3 x+4 \\
& g(x)=2 x-3
\end{aligned}
$$

Calculate the value of:
(i) $\quad f(7)$
(ii) $g g(11)$
(iii) $f g(4)$

Question 9

The diagram shows triangle $A B C$

Calculate the size of angle BAC
Give your answer correct to 1 decimal place.
Show clear working.

Question 10

Quadratic equations, which are of the form,

$$
a x^{2}+b x+c=0
$$

where a, b and c are constants, and x is a variable, have solutions given by,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Consider the equation;

$$
5 x^{2}+7 x+2=0
$$

Show how the above formula could be used to solve this equation.

