Trial Trail Revision #3

IGCSE Mathematics Trial Trail Revision Papers

Answer as many questions as you can You are expected to have a calculator available Marks Available : 40

Question 1

For his motorbike, Fergus buys x litres of petrol at 161 pence per litre. He has to pay ± 30.59 in total for the petrol bought. How many litres of petrol did Fergus buy ?

[2 marks]

Question 2

The diagram shows a cuboid and a cube.

The dimensions of the cuboid are x cm by 6 cm by 3 cm The volume of the cuboid is 45 cm³

The cube has sides of length x cm

Work out the volume of the cube.

Give your answer correct to one decimal place.

(i) Translate flag A by the vector $\begin{pmatrix} -4\\ 1 \end{pmatrix}$ Label this new flag with the letter C

[2 marks]

(ii) Find a single transformation that moves flag A to flag B

[3 marks]

Question 4

Solve these simultaneous equations;

5x + 6y = 92x + 3y = 3

[4 marks]

Expand the brackets and simplify,

(i)
$$(3x+5)(2x-1)$$
 (ii) $(4x+3)^2$

				[3, 3 marks]
Question	6			
Find the r	median of these five	ve numbers;		
43	28	37	30	12

[2 marks]

Question 7

Two similar shapes have an area scale factor between them of 25. What is the length scale factor between the two similar shapes ?

[1 mark]

Question 8

Consider the functions, f and g, given by,

$$f(x) = 3x + 4$$

 $g(x) = 2x - 3$

Calculate the value of:

(i) f(7) (ii) gg(11) (iii) fg(4)

[1, 2, 3 marks]

The diagram shows triangle ABC

Calculate the size of angle *BAC* Give your answer correct to 1 decimal place. Show clear working.

Quadratic equations, which are of the form,

$$ax^2 + bx + c = 0$$

where a, b and c are constants, and x is a variable, have solutions given by,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Consider the equation;

$$5x^2 + 7x + 2 = 0$$

Show how the above formula could be used to solve this equation.

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk